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Abstract—Attention deficit hyperactivity disorder (ADHD) is
a mental disorder that affects the behavior of the persons, and
usually onsets in childhood. ADHD generally causes impulsivity,
hyperactivity, and inattention which impairs day-to-day life even
in the adulthood if left undiagnosed and untreated. Although
various guidelines for diagnosis of ADHD exist, a universally
accepted objective diagnostic procedure is not established. Since
current diagnosis of ADHD heavily relies on the expertise of
healthcare providers, an EEG Topographic Feature Map (EEG-
FM) based method is proposed in this study which aims to objec-
tively diagnose ADHD. 6 different features extracted from EEG
recordings acquired from 33 participants, 15 ADHD patients and
18 control subjects, converted into EEG-FM images and fed into
a convolutional neural network (CNN) based classifier. Results
indicate that the proposed method can accurately classify ADHD
patients with up to 99% accuracy, precision, and recall.

Index Terms—Attention Deficit Hyperactivity Disorder
(ADHD) detection, EEG feature maps, deep learning, CNN.

I. INTRODUCTION

Attention Deficit Hyperactivity Disorder (ADHD) is a
neuro-developmental disorder which affects children and
adults and has long-term consequences [1], [2]. ADHD can
include problems with attention deficit, which includes symp-
toms such as difficulty sustaining attention. Defining ADHD
disease and determining an appropriate treatment method for
the patient play an important role in increasing the patient’s
quality of life [1]–[4].

ADHD is often diagnosed based on the information pro-
vided by the patient, their teachers, parents, and question-
naires. This subjective diagnosis is impacted by the doctor’s
training. Diagnosing ADHD is a difficult task, and misdiag-
nosis is likely to occur [1], [2]. Numerous researchers have
concentrated on recording neural activity using invasive and
non-invasive techniques to diagnose ADHD since it is inti-
mately associated with brain function. The majority of research
uses non-invasive techniques to diagnose ADHD, includ-
ing electroencephalography (EEG), functional near-infrared
spectroscopy (fNIRS), functional magnetic resonance imaging
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(fMRI), and magnetoencephalography (MEG). Additionally,
using magnetic resonance imaging and functional neuroimag-
ing methods may also need costly and drawn-out procedures
[1], [2]. On the other hand, EEG signals have been widely
utilized as an effective, inexpensive, and non-invasive method
for the identification of brain activity [1], [2], [5].

Studies of ADHD have been based on recording the EEG
signal under resting conditions and other cognitive conditions.
There are many studies investigating the sum, absolute and
relative power of EEG sub-frequency bands such as delta, theta
and alpha with the aim of defining ADHD with their EEG
features. [4]–[10]. At the same time, the decrease in fast wave
activity in the beta sub-band is one of the important indicators
in the diagnosis of ADHD.

Several nonlinear measurement techniques have been used
effectively to extract important information for ADHD di-
agnosis from EEG signals. Complexity measures of EEG,
such as entropy, have been used more and more to define
ADHD. For complexity analysis of EEG activity, approximate
entropy, sample entropy, Kolmogorov-Sinai entropy, Tsali en-
tropy, fuzzy entropy, permutation entropy and wavelet entropy
were used [4], [6], [11]–[15]. Another complexity criterion
used to evaluate the nature of the EEG signal is the fractal
dimension, and different FD measurements were calculated
based on Higuchi, Katz, Sevcik, and Petrosian techniques [4],
[11], [13], [16]. The complexity of the EEG signals of ADHD
patients and successful results have been reported.

In recent studies [2], [17]–[22], deep learning models have
been used for the diagnosis of ADHD, which can distinguish
between patients who are sick and those who are healthy,
using EEG data to classify very well. Some researchers have
focused on using images obtained from EEG signals as input
to CNN architectures [18], [20], [22] rather than using direct
EEG signal as input [17], [19], [21]. In the aforementioned
ADHD studies, different approaches have been proposed to
generate input images to deep networks using EEG signals.

In the aforementioned ADHD investigations, many methods
for producing input pictures for deep networks utilizing EEG
data have been presented. EEG Topographic Feature Maps
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(EEG-FM) visualize the activity levels of different parts of the
brain. Imaging techniques such as brain mapping can be used
to link the connections and functions of the brain. Finding a
functionally integrated link between physically different brain
areas is made possible by brain functional connectivity [23].
EEG-FM, a novel technique developed utilizing conventional
EEG features, successfully identifies emotions in experiments
involving emotion identification. It represents the spatial and
temporospatial information of an EEG segment [24]–[26].

In this study, an innovative, fast, and automatic classifica-
tion method for the diagnosis of ADHD based on EEG-FM
and CNN is proposed. EEG-FMs generated from 6 different
nonlinear features extracted from each EEG channel. These
features are namely Approximate Entropy (ApEn) [6], [11],
[13], [15], Correlation Dimension (CD) [13], [14], Hurst Expo-
nent (HE) [12], Higuchi’s Fractal Dimension (HFD) [11]–[13],
[16], Katz’s Fractal Dimension (KFD) [11]–[13], [16], and
Largest Lyapunov Exponent (LLE) [11]–[16]. Although these
features themselves provide valuable information regarding the
EEG recordings, EEG-FMs allow spatial information to be
kept, enabling a more accurate discrimination of the ADHD
and normal recordings [24]–[26]. Thus they were mapped
onto images on a channel-by-channel basis. All six features
were fed into two custom CNN structures to investigate their
classification performances in terms of different parameters.

II. MATERIAL AND METHOD

In conventional studies that uses features extracted from
segmented EEG signals, electrode topography is not taken
into consideration. However, the positioning of the EEG
electrodes and the information acquired from each electrode is
significant [24]. The change of activity in different regions of
the brain is reflected on the EEG electrodes, providing valuable
spatial information. By representing both temporal and spatial
information in terms of topographic images, it was made easier
to distinguish the levels of activity change via a 2-layer CNN.

In this study, various non-linear EEG features extracted
from the each segmented EEG signals were mapped onto
images. These images are then used as an input to two CNN-
based classifiers to distinguish ADHD and control subjects.

A. Experimental ADHD Dataset

A 4 minute spontaneous EEG was recorded from 15 ADHD
patients and 18 healthy persons while they were at rest and
had their eyes open. ADHD patient population consisted of
8 female and 7 male children with mean age of 12; whereas
healthy children population consisted of 14 female and 4 male
children with a mean age of 13. The data was recorded at
Izmir Katip Celebi University using Brain Vision EEG system.
International 10-20 system is used for electrode placement
and acquisition of 30 channels which were Fp1, Fp2, F7,
F8, F3, F4, Fz, FT7, FT8, FC3, FC4, FCz, T3, T4, C3, C4,
Cz, TP7, TP8, CP3, CP4, CPz, T5, T6, P3, P4, O1, O2, Oz.
The study was carried out under the approval of Izmir Katip
Celebi University Non-Interventional Clinical Research Ethics
Committee numbered 76, and dated 11.07.2019.

The sampling frequency of the recordings are 1 kHz, and
they are filtered with a Butterworth band-pass filter with a pass
band of [0.5−50] Hz to remove various sources of noise such
as power-line. After denoising, data of each EEG channel is
segmented into 5 s epochs for further processing.

B. The Construction of EEG Topographical Feature Maps
The construction of EEG-FMs goes through three stages.

15 ADHD patients and 18 control participants provided the
30-channel raw EEG readings, each lasting for 4 minutes.
EEG segments of 5 s in length are used to extract the
time domain and nonlinear features, namely Higuchi’s Fractal
Dimension (HFD), Katz’s Fractal Dimension (KFD), Corre-
lation Dimension (CD), Largest Lyapunov Exponent (LLE),
Approximate Entropy (ApEn), and Hurst Exponent (HE),
for all 30 channels’ × 48 (4 min/5 s) segments after the
necessary denoising and segmentation steps. For each EEG
channel and each segment of ADHD patients and control
individuals, 6 characterizing features are acquired. Then, the
feature vector is scaled between 0 and 1, as shown in equation
(1) which includes features calculated from EEG segments of
both ADHD patients and healthy controls:

Y
′

i =
Yi − Ymin

Ymax − Ymin
(1)

where Y
′

i denotes the normalized feature value of ith subject,
Ymax and Ymin are the maximum and minimum values of
the total feature vector. By arranging the normalized feature
from one subject, one segment, and all channels on a matrix
as described in [24]–[26], EEG-FM matrix of any feature is
constructed. For each of the 6 features of control individuals
and ADHD patients.

The normalized feature values of the 30 EEG channels are
mapped onto the matrix as shown in Fig.1 top-right using
the same 10-20 electrode placements system as is used in the
recording stage (shown in Fig.1 top-left). Some researchers
recently suggested a mapping method that precisely places
each electrode into a matrix with nine rows and nine columns
[24]–[26]. This mapping is appropriate for all EEG acquisition
systems with fewer than 81 electrodes. Therefore, using this
matrix mapping, EEG-FMs were generated. The normalized
feature values are inserted into dots labeled with channel
names in the feature matrix. A visual representation of the
mapping process is given in Fig. 1, top-right corner. Eq. 2
can be used to show how the values of the missing points
which are not labeled with channels relate to the values of the
surrounding labeled points.

W(i,j) =
W

′

(i+1,j) +W
′

(i−,j) +W
′

(i,j+1) +W
′

(i,j−1)

M
, (2)

0 ≤ i, j ≤ 8; (i, j) ∈ N where W indicates the nor-
malized feature value of the gray point, W

′
is the normalized

value of the point neighboring this point. The default value of
K is 1, and it refers to the number of non-zero components in
the numerator.

In total, 4380 and 5196 EEG-FMs were constructed for the
control and ADHD group, labeled as 0 and 1, respectively.
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Fig. 1: 10-20 electrode mapping on the 9 × 9 matrix and
generation of EEG-FMs.

C. Convolutional Neural Network

Deep learning has become an intense interest of researchers
in recent years. Convolutional Neural Networks (CNN) is the
most popular and used algorithm in deep learning studies
[27]. Inspired by the brain neural networks of animals, CNN
is used especially for image recognition and classification.
Furthermore, CNN is also very good at classifying audio, time
series and signal data [28]. The CNN algorithm, which uses
images as input, consists of many interconnected layers of
neurons, each of which has a specific purpose. CNN basically
consists of three main layers: convolution, pooling, and fully
connected layers [27].

Two different CNN models are developed and tested in order
to get the more optimal results: “CNN Model #1” and “CNN
Model #2” are given in Fig. 2. In both models, 681 × 541
sized EEG-FM images are utilized. These EEG-FMs contain
EEG data gathered from subjects with and without ADHD,
as mentioned in the previous sections. The CNN model was
used as a binary classifier and EEG-FM images given as input
are labeled as 0 and 1 indicating individuals without and
with ADHD, respectively. The data was split into training and
test sets using 80% and 20% of the total data, respectively.
Classification results of these 2 models were compared in
terms of accuracy, precision, and recall as well as their learning
performance was compared with loss functions.

III. RESULTS AND DISCUSSION

In this study, a CNN-based model in which EEG-FMs are
used as input has been proposed in order to understand whether
individuals have ADHD.

EEG-FMs are generated using nonlinear EEG features, and
then used for the training of 2 different CNN models. EEG-
FMs belonging to all 6 features were given as input to CNN,
labeled as ”0” and ”1”, indicating control and ADHD subjects.
Both of the CNN models were trained for 10 epochs. Results
of the training and validation processes were given in Table I.

Fig. 2: (a) Layer structure of the first CNN model used in
classification (b) Layer structure of the second CNN model
used in classification

CNN Model #1 and CNN Model #2 were given the same
EEG-FM images and both models were trained for a total
of 10 epochs. Comparing the 2 models, CNN Model #1 has
fewer drop outs and layers than CNN Model #2. As seen in the
results in Table I, the train accuracy of the first and last epoch
in CNN Model #1 is % 96.69 and % 99.9, respectively. In
CNN Model #2, the train accuracy of the first and last epoch
is %79.1 and %95.88, respectively. When CNN Model #1 and
CNN Model #2 are compared, although CNN Model #1 has a
higher accuracy result, we can conclude that CNN Model #2
learned better when looking at the first and last epochs.

Due to time constraints, it was not possible to optimize
the parameters and epoch numbers. Therefore loss function
behavior of both models are not ideal. However, it can be
argued that the models did not overfit and were able to
generalize well considering loss and corresponding accuracy,
precision, and recall values. To better visualize the results, Fig.
3, was plotted to depict the accuracy and loss of CNN Models
#1 and #2.

IV. CONCLUSION

In this study, EEG-FMs generated from 6 nonlinear features
were used as input of 2 different CNN models to classify
ADHD. By mapping numerical features extracted from EEG
data into matrices to form EEG-FMs, both temporal and spatial
information is represented on the same image. This enables
preserving topographical layout of the EEG acquisition via
electrodes, which is important when it comes to highlighting
and making use of which areas of the brain is more active.

Preliminary results indicate that the proposed method pro-
vides encouraging classification performance. Although there
are not many studies published in this field that use a com-
parable method to classify ADHD that correlates directly to
ours, the proposed method outperforms similar studies such
as [29] and [24]. While it is not possible to directly compare
the outcome of this study with the existing literature, it can be
argued that the method proposed can compete with previous
studies while introducing significant novelties to the field of
interest.
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TABLE I: Classification results for both CNN Model #1 and CNN Model #2 over 10 epochs. ”Num. of Epochs” indicates the
number of epoch that the result was acquired. ”Train.” indicates data related to training of the CNN, and ”Val.” indicates data
related to the validation of the CNN model.

Model #1
Num. of Epochs Train. Loss Train. Accuracy Train. Precision Train. Recall Val. Loss Val. Accuracy Val. Precision Val. Recall

# 1 0.1635 0.9669 0.9734 0.9654 0.2941 0.8703 0.9087 0.8456
# 2 0.0732 0.9776 0.9786 0.9802 0.2941 0.8661 0.8794 0.8726
# 3 0.0579 0.9821 0.9835 0.9835 0.4638 0.8787 0.8941 0.8726
# 4 0.02 0.9946 0.9967 0.9934 0.5638 0.8787 0.8941 0.8803
# 5 0.0108 0.9991 0.9984 1 0.7093 0.8849 0.9016 0.8842
# 6 0.007 0.9973 0.9967 0.9984 0.7236 0.8828 0.9044 0.8764
# 7 0.0076 0.9973 0.9983 0.9967 0.7851 0.8724 0.9057 0.8533
# 8 0.0052 0.9991 0.9984 1 0.6723 0.887 0.902 0.888
# 9 0.002 1 1 1 0.8033 0.8849 0.908 0.8764

# 10 0.0048 0.9991 1 0.9984 0.6292 0.8849 0.8893 0.8996
Model #2

Num. of Epochs Train. Loss Train. Accuracy Train. Precision Train. Recall Val. Loss Val. Accuracy Val. Precision Val. Recall
# 1 0.5272 0.791 0.7468 0.8216 0.4115 0.8332 0.7695 0.9072
# 2 0.4333 0.8173 0.7646 0.8676 0.4067 0.8311 0.7615 0.9186
# 3 0.3704 0.8529 0.8291 0.8545 0.3906 0.8377 0.7721 0.9155
# 4 0.3112 0.8826 0.8835 0.8562 0.2509 0.8868 0.8394 0.9307
# 5 0.2462 0.913 0.9148 0.893 0.2331 0.9039 0.8794 0.9155
# 6 0.1902 0.9287 0.9276 0.9155 0.2328 0.9004 0.8579 0.9376
# 7 0.1574 0.9415 0.9384 0.9335 0.2628 0.8966 0.8237 0.9848
# 8 0.1321 0.955 0.9528 0.9485 0.1926 0.9133 0.8732 0.9482
# 9 0.1268 0.9536 0.948 0.9508 0.2199 0.9077 0.8421 0.9825

# 10 0.1179 0.9588 0.9538 0.9563 0.1563 0.9251 0.8851 0.9612

(a) (b)

(c) (d)

Fig. 3: Training and validation over 10 epochs of the CNN Model #1 and #2. a) Accuracy of Model #1 b) Loss of Model #1
c) Accuracy of Model #2 d) Loss of Model #2
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In the future studies, 6 nonlinear features will be classified
individually, and the results will be compared with this study.
This may help highlighting more prominent features better,
thus enabling shorter duration for the training of the CNN
models. Furthermore, different CNN models will be trained to
investigate the possibility of finding more suitable networks
for the data used and the performance of proposed CNNs
will be compared with the conventional machine learning
algorithm classifier performances. Finally, EEG-FMs of the
linear features that can be extracted from the dataset will be
used to compare and contrast better performing feature sets in
classification of ADHD.
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and M. İzzetoğlu, “Diagnosis of attention deficit hyperactivity disor-
der with combined time and frequency features,” Biocybernetics and
Biomedical Engineering, vol. 40, no. 3, pp. 927–937, 2020.

[5] H. Chen, W. Chen, Y. Song, L. Sun, and X. Li, “EEG characteristics
of children with attention-deficit/hyperactivity disorder,” Neuroscience,
vol. 406, pp. 444–456, 2019.

[6] J. J. González, L. D. Méndez, S. Mañas, M. R. Duque, E. Pereda, and
L. De Vera, “Performance analysis of univariate and multivariate EEG
measurements in the diagnosis of ADHD,” Clinical Neurophysiology,
vol. 124, no. 6, pp. 1139–1150, 2013.

[7] S. J. Johnstone, L. Parrish, H. Jiang, D.-W. Zhang, V. Williams, and
S. Li, “Aiding diagnosis of childhood attention-deficit/hyperactivity
disorder of the inattentive presentation: Discriminant function analysis
of multi-domain measures including EEG,” Biological Psychology, vol.
161, p. 108080, 2021.

[8] A. Singh, C. J. Yeh, N. Verma, and A. K. Das, “Overview of attention
deficit hyperactivity disorder in young children,” Health psychology
research, vol. 3, no. 2, 2015.

[9] A. Tenev, S. Markovska-Simoska, L. Kocarev, J. Pop-Jordanov,
A. Müller, and G. Candrian, “Machine learning approach for classi-
fication of ADHD adults,” International Journal of Psychophysiology,
vol. 93, no. 1, pp. 162–166, 2014.

[10] I. Buyck and J. R. Wiersema, “State-related electroencephalographic
deviances in attention deficit hyperactivity disorder,” Research in devel-
opmental disabilities, vol. 35, no. 12, pp. 3217–3225, 2014.

[11] M. R. Mohammadi, A. Khaleghi, A. M. Nasrabadi, S. Rafieivand,
M. Begol, and H. Zarafshan, “EEG classification of ADHD and normal
children using non-linear features and neural network,” Biomedical
Engineering Letters, vol. 6, no. 2, pp. 66–73, 2016.

[12] H. T. Tor, C. P. Ooi, N. S. Lim-Ashworth, J. K. E. Wei, V. Jahmunah,
S. L. Oh, U. R. Acharya, and D. S. S. Fung, “Automated detection
of conduct disorder and attention deficit hyperactivity disorder using
decomposition and nonlinear techniques with EEG signals,” Computer
Methods and Programs in Biomedicine, vol. 200, p. 105941, 2021.

[13] Y. K. Boroujeni, A. A. Rastegari, and H. Khodadadi, “Diagnosis of
attention deficit hyperactivity disorder using non-linear analysis of the
EEG signal,” IET systems biology, vol. 13, no. 5, pp. 260–266, 2019.

[14] F. Ghassemi, M. Hassan Moradi, M. Tehrani-Doost, and V. Abootalebi,
“Using non-linear features of EEG for ADHD/normal participants’
classification,” Procedia-Social and Behavioral Sciences, vol. 32, pp.
148–152, 2012.

[15] S. Khoshnoud, M. A. Nazari, and M. Shamsi, “Functional brain dynamic
analysis of ADHD and control children using nonlinear dynamical
features of EEG signals,” Journal of integrative neuroscience, vol. 17,
no. 1, pp. 17–30, 2018.

[16] A. Allahverdy, A. K. Moghadam, M. R. Mohammadi, and A. M.
Nasrabadi, “Detecting ADHD children using the attention continuity as
nonlinear feature of EEG,” Frontiers in Biomedical Technologies, vol. 3,
no. 1-2, pp. 28–33, 2016.

[17] H. Chen, Y. Song, and X. Li, “A deep learning framework for identifying
children with ADHD using an EEG-based brain network,” Neurocom-
puting, vol. 356, pp. 83–96, 2019.

[18] A. Vahid, A. Bluschke, V. Roessner, S. Stober, and C. Beste, “Deep
learning based on event-related EEG differentiates children with ADHD
from healthy controls,” Journal of clinical medicine, vol. 8, no. 7, p.
1055, 2019.

[19] M. Moghaddari, M. Z. Lighvan, and S. Danishvar, “Diagnose ADHD
disorder in children using convolutional neural network based on
continuous mental task EEG,” Computer Methods and Programs in
Biomedicine, vol. 197, p. 105738, 2020.

[20] A. Ahmadi, M. Kashefi, H. Shahrokhi, and M. A. Nazari, “Computer
aided diagnosis system using deep convolutional neural networks for
ADHD subtypes,” Biomedical Signal Processing and Control, vol. 63,
p. 102227, 2021.

[21] L. Dubreuil-Vall, G. Ruffini, and J. A. Camprodon, “Deep learning
convolutional neural networks discriminate adult ADHD from healthy
individuals on the basis of event-related spectral EEG,” Frontiers in
neuroscience, vol. 14, p. 251, 2020.

[22] M. Tosun, “Effects of spectral features of EEG signals recorded with
different channels and recording statuses on ADHD classification with
deep learning,” Physical and Engineering Sciences in Medicine, vol. 44,
no. 3, pp. 693–702, 2021.

[23] L. S. Hooi, H. Nisar, and Y. V. Voon, “Tracking of EEG activity using
topographic maps,” in 2015 IEEE International Conference on Signal
and Image Processing Applications (ICSIPA). IEEE, 2015, pp. 287–
291.

[24] A. Topic and M. Russo, “Emotion recognition based on EEG feature
maps through deep learning network,” Engineering Science and Tech-
nology, an International Journal, vol. 24, no. 6, pp. 1442–1454, 2021.

[25] H. Chao, L. Dong, Y. Liu, and B. Lu, “Emotion recognition from
multiband EEG signals using capsnet,” Sensors, vol. 19, no. 9, p. 2212,
2019.

[26] Y. Li, J. Huang, H. Zhou, and N. Zhong, “Human emotion recognition
with electroencephalographic multidimensional features by hybrid deep
neural networks,” Applied Sciences, vol. 7, no. 10, p. 1060, 2017.

[27] L. Alzubaidi, J. Zhang, A. J. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-
Shamma, J. Santamarı́a, M. A. Fadhel, M. Al-Amidie, and L. Farhan,
“Review of deep learning: concepts, CNN architectures, challenges,
applications, future directions,” J. Big Data, vol. 8, no. 1, p. 53, 2021.

[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[29] B. TaghiBeyglou, A. Shahbazi, F. Bagheri, S. Akbarian, and M. Jahed,
“Detection of ADHD cases using CNN and classical classifiers of raw
EEG,” Comput. Methods Programs Biomed. Update, vol. 2, no. 100080,
p. 100080, 2022.

1109


