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Abstract—Polyp segmentation has recently garnered signif-
icant attention, and multiple methods have been formulated
to achieve commendable outcomes. However, these techniques
often confront difficulty when working with the complex polyp
foreground and their surrounding regions because of the nature
of convolution operation. Besides, most existing methods forget to
exploit the potential information from multiple decoder stages.
To address this challenge, we suggest combining MetaFormer,
introduced as a baseline for integrating CNN and Transformer,
with UNet framework and incorporating our Multi-scale Up-
sampling block (MU). This simple module makes it possible to
combine multi-level information by exploring multiple receptive
field paths of the shallow decoder stage and then adding with the
higher stage to aggregate better feature representation, which is
essential in medical image segmentation. Taken all together, we
propose MetaFormer Multi-scale Upsampling Network (M2UNet)
for the polyp segmentation task. Extensive experiments on five
benchmark datasets demonstrate that our method achieved com-
petitive performance compared with several previous methods.

Index Terms—MetaFormer, UNet, Polyp Segmentation

I. INTRODUCTION

Colorectal cancer poses a significant threat to human health
and society, making it a substantial health concern. Polyps,
which are abnormal growths in the colon or rectum, have the
potential to develop into cancerous tumors over time. Early
detection of polyps plays a vital role in preventive healthcare,
as it can greatly improve the prognosis and treatment effec-
tiveness for individuals with colorectal cancer [1].

In recent years, early diagnosis has emerged as a critical
factor in treating and preventing colorectal cancer, particularly
in polyp detection. However, the accuracy of early diagnosis
is constrained by various external factors, as highlighted in
[2]. Consequently, polyp segmentation has become an integral
component of the diagnostic process.

Deep Learning approaches have gained prominence in polyp
image segmentation, with methods such as UNet [3], UNet++
[4], PraNet [5], MSNet [6], and PEFNet [7], demonstrating
competitive performance in state-of-the-art results. While Con-
volutional Neural Network (CNN) models excel in capturing
local information, they face challenges in comprehensively
representing the overall shape of polyp objects, which is

crucial for precise segmentation. This limitation significantly
contributes to missed segment areas, which are essential out-
puts in segmentation tasks. Moreover, existing methods mainly
concentrate on improving the feature representations of the
encoder and skip connection but forget to consider the decoder.

In this paper, we propose the MetaFormer Multi-scale
Upsampling Network (M2UNet) that combines MetaFormer
[8] with UNet [3] and a Multi-scale Upsampling block (MU).
The MetaFormer framework [8] facilitates incorporating both
local and global information by employing convolution-based
downsampling to capture local features while utilizing a Trans-
former encoder to capture global features in subsequent stages.

Besides, our MU module enhances the ability to capture
multi-level information between multiple decoder stages, fur-
ther ameliorating the segmentation results of the entire archi-
tecture. The MU module specifically employs two receptive
field paths to exploit the information of feature maps in dif-
ferent aspects. The output features of MU are cumulative with
the features of the decoder layer one stage away, which helps
the model extracts comprehensive information from different
levels of the decoder. Our proposed method shows competitive
results on various datasets, demonstrating our model’s ability
against the weaknesses of existing approaches.

To summarize, our contributions are threefold:

• We propose the MetaFormer Multi-scale Upsampling
Network, termed as M2UNet, combining MetaFormer
with UNet for improving the local and global contextual
representations of the polyp objects.

• We introduce a Multi-scale Upsampling block (MU) for
enhancing the representation ability of different levels of
decoder features.

• We demonstrate the effectiveness of our method on
five benchmark datasets: Kvasir-SEG [9], CVC-ClinicDB
[10], CVC-ColonDB [11], ETIS [12] and CVC-300 [13].

The content of this paper is organized as follows. In
Section II, we briefly review existing methods related to
this research. Then we propose our methods in Section III.
Experiments and discussion are in Section IV. Finally, we
present the conclusion in Section V.
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II. RELATED WORK

UNet [3] sets a new precedent as it was the first model to
integrate skip connections in the encoder-decoder architecture,
specifically for medical segmentation tasks. This pioneering
technique merges shallow and deep features, improving the ac-
curacy and reliability of the segmentation process. Since then,
many works have been taken to enhance UNet’s performance
in the segmentation task.

UNet++ [4] ameliorates the performance of UNet by
nested skip connections. In addition, SFA [14] proposes the
boundary-sensitive loss and additional decoder to encourage
the model to focus on the polyp boundary. PraNet [5] utilizes
a reverse attention module and parallel partial decoder to
enhance the precise boundary separating a polyp from the sur-
rounding mucous membrane. MSNet [6] specifically employs
cascaded subtraction operations at multiple levels and stages
to capture complementary information from different levels.

Recently, Hieu et al. [15], and PEFNet [7] concentrate on
the positional information, improving the overall detection
of polyp regions. In general, most methods seem to ignore
useful information of the decoder’s features. We believe that
by capturing the multi-level information of the decoder, the
model can achieve more accurate polyp localization.

In summary, UNet and its variants, along with techniques
like skip connections, boundary-sensitive loss, attention mech-
anisms, and positional cues, have significantly advanced polyp
segmentation. But there is still potential in harnessing the
decoder’s features to further improve accuracy.

III. METHODS

A. General architecture

A novel M2UNet is built by extending the UNet architecture
by incorporating modifications inspired by the ConvFormer
and Transformer blocks from the MetaFormer baseline in the
encoder stage. Additionally, we introduce the utilization of the
Multi-scale Upsampling module (MU) to enhance the multi-
scale representation of the decoder. The complete architecture
is illustrated in Figure 1.

The input tensor X ∈ RW×H×3 has a shape of W ×H×3,
where W represents the width, H represents the height,
and the encoder extracts features Xi ∈ R

W

2i+1 × H

2i+1 ×Fi at
different stages, denoted by Fi ∈ {64, 128, 320, 512} and
i ∈ {1, 2, 3, 4}, representing the filters used at each step of
the encoder and decoder stages.

In the decoder stage, although the feature is upsampled
twice using Convolution Transpose 2D at each step, we
further enhance the feature by employing our Multi-scale
Upsampling block (MU), which upsamples the feature four
times at step i. The upsampled features are then merged with
the features at step i − 2 to enrich the feature representation
while incorporating the previously upsampled features.

Following this, the decoder stage generates a mask with a
shape of W ×H×64. Subsequently, a 1×1 Convolution layer
is applied to map the feature map from 64 filters to a single
filter, producing the final output.

B. ConvFormer Block

In the MetaFormer [8], the ConvFormer block investigates
the capabilities of established token mixers to achieve excellent
performance. Instead of developing new token mixers, the
block relies on commonly-used operators to assess the lower
limits of performance and model versatility.

The ConvFormer block consists of four steps. The first
step involves creating token mixers. To accomplish this, the
Convolution operation is employed using two specific tech-
niques: Depthwise Convolution and Separable Convolution.
These convolutional operations are utilized to enhance the
mixing of tokens within the model architecture, promoting
effective information exchange and integration across different
parts of the input sequence.

Conv(Xi) = Convpw2(Convdw(σ(Convpw1(Xi)))) (1)
Xi = Xi + Conv(Norm(Xi)) (2)

Xi = Xi+ σ(Norm(Xi)W1)W2 (3)

Equations 1 2, and 3, referenced in the paper [8], introduce
the ConvFormer block. Within this equation, Convpw repre-
sents the pointwise Convolution operation applied at index i,
while Convdw refers to the Depth-wise Convolution operation.
In the subsequent stages, the output of equation 1 is normal-
ized before the skip connection is incorporated. Following the
normalization step, equation 2 demonstrates the application
of the skip connection to the normalized output. Equation 3
also demonstrates the skip connection output is adjustable by
utilizing two learnable parameters, denoted as W1 and W2.
They are applied in the Channel MLP layer showcasing this
adjustment, where W1 and W2 are used to modify the output
and shape it according to the desired characteristics or patterns.
The activation function σ(.) is applied to the output of the
Channel MLP layer, introducing non-linearity and enhancing
the expressive power of the ConvFormer block.

C. Transformer Block

The Transformer block incorporates the fundamental princi-
ples of the conventional Transformer. It consists of a traditional
self-attention mechanism that generates an attention mask. By
utilizing this self-attention mechanism, the model can focus
on various segments of the input sequence and comprehend
the interrelationships among its features. The attention feature
is derived from the resemblance between the input tokens,
which determines the significance of each token in the ultimate
output. This mechanism facilitates the model in grasping
distant connections and contextual details.

Xi = Xi + SelfAttention(Norm(Xi)) (4)
Xi = Xi + σ(Norm(Xi)W1)W2 (5)

In Equation 4, the self-attention mechanism, known as
Self Attention, is introduced. This mechanism governs the
computation of the output. Equation 5 represents the skip
connection that is applied. The resulting output can be adjusted
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Fig. 1. General architecture of M2UNet

by utilizing two learnable parameters, namely W1 and W2,
which originate from the Channel MLP layer.

D. Multi-scale Upsampling Block
The Multi-scale Upsampling block (MU) comprises two

stages. The first is the Upsampling stage, where the input
data is upsampled to a higher resolution. This process in-
creases the spatial dimensions of the data, while the second
stage is the Multi-scale Addition, where multiple scales or
resolutions of the upsampled data are added together. This
addition operation allows for incorporating information from
different scales, enabling the model to capture fine-grained
and high-level features. Combining information from multi-
scale gives the model a more comprehensive understanding
of the polyp foreground and background, thus making more
accurate predictions.

Xi = Upsampling(Xi) (6)
Xi = Conv3x3(Xi) + Conv7x7(Xi) (7)

Xi−2 = σ(Xi−2 +Xi) (8)

Equation 6 describes the Upsampling stage, in which the
nearest interpolation is used. The Xi ∈ RW×H×C denotes
the input tensor at stage i. Following this, the Multi-scale
Addition is performed by extracting the input tensor through
two convolution layers with kernel sizes of 3 × 3 and 7 × 7.
Two output features are added to create the decoder’s output
features at stage i, as seen in Equation 7.

Finally, the Multi-scale Upsampling feature is added with
the feature output at the decoder stage i− 2 to form the new
representation feature of the decoder. After that, the activation
function σ(.) is applied to the output, further enhancing the
non-linear mapping and introducing the model’s non-linearity;
the full equation is described in Equation 8.

IV. EXPERIMENTS

A. Dataset

To conduct the fair comparison, we follow the merged
dataset from the PraNet [5] for training which includes 900
samples from Kvasir-SEG [9] and 550 samples from CVC-
ClinicDB [10]. The remaining images of Kvasir-SEG [9] and
CVC-ClinicDB [10] with three unseen datasets, including
ColonDB [11], CVC-300 [13] and ETIS [12] are used for
benchmarking.

B. Implementation Details and Evaluation Metrics

All architectures are implemented using the Keras frame-
work with TensorFlow as the backend. Input images are
normalized to the range [-1, 1]. Adam optimization [16] is
utilized with an initial learning rate of 1e-4. Subsequently, the
Cosine Annealing learning rate schedule stabilizes the training
process.

The experiments are conducted on a single NVIDIA Tesla
A100 40GB GPU with a batch size of 128. Training the entire
dataset takes approximately 6 hours. The model is trained for
158 epochs. The images are resized to 352 × 352 during the
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training and inference stages. Augmentation techniques such
as Center Crop, Random Rotate, GridDistortion, CutOut [17],
CutMix [18], Horizontal and Vertical Flip are applied.

The Jaccard loss function used to supervise our model in
the training process can be formulated as follows:

JaccardLoss(y, ŷ) = α× (1−
α+

∑C
c yc × ŷc

α+
∑C

c yc + ŷc − yc × ŷc
)

(9)
The Jaccard Loss, which is shown in Equation 9, is also

called the Intersection over Union (IOU) metric [19]. The true
label is denoted as y, while the predicted label is represented
as ŷ. Both labels are expressed as one-hot vectors, indicating
the classes with a length equivalent to the number of classes,
denoted as C. The α smoothing factor is set to 0.7 in our
method. Note that we do not use deep supervision techniques
to train our model.

We adopt three evaluation common metrics for quantitative
evaluation: mean Dice (mDice), mean IoU (mIoU), and Mean
Absolute Error (MAE) to evaluate our method’s performance.
The higher value is better for mDice as well as mIoU, and the
lower is better for MAE.

C. Performance Comparisons

To evaluate the effectiveness of our model, we compare
M2UNet with several methods, including UNet [3], UNet++
[4], SFA [14], PraNet [5], MSNet [6], Hieu et al. [15] and
PEFNet [7]. Since the setting datasets of Hieu et al. [15] and
PEFNet [7] are different, we retrain both methods on the same
setting in PraNet [5] for a fair comparison.

1) Quantitative Result: As shown in Table I, our M2UNet
attains superior performance in CVC-300 and ColonDB
datasets, demonstrating our model’s ability in the unseen do-
main. On the other three unseen datasets, i.e. Kvasir, ClinicDB,
and ETIS, the M2UNet also obtains the second-highest score
even though we do not utilize the deep supervision technique.

2) Qualitative Result: In Figure 2, we perform the qual-
itative visualization for several methods. It can be seen that
our method can cover more accurate polyp regions. In general,
our MU can better highlight the polyp regions based on the
multi-scale information of different levels of the decoder.

D. Ablation Study

To evaluate the effectiveness of the MU module, we conduct
the ablation study on the Kvasir dataset. As described above,
the standard MU module includes two stages, Upsampling and
Multi-scale Addition. We analyze the quantitative contribution
of both Upsampling stage and MU module to the model
performance, which is shown in Table II.

According to the empirical findings, integrating the
Metaformer backbone with UNet yields a dice score of 0.874.
Including an additional Upsampling stage leads to a gradual
improvement in the score, reaching 0.882. Introducing Multi-
scale Upsampling further enhances the results slightly, raising
the score to 0.891.

Methods mIoU ↑ mDice ↑ MAE ↓

Kvasir

UNet [3] 0.756 0.821 0.055
UNet++ [4] 0.743 0.820 0.048

SFA [14] 0.611 0.723 0.075
PraNet [5] 0.840 0.898 0.030
MSNet [6] 0.862 0.907 0.028

Hieu et al. [15] 0.835 0.891 0.029
PEFNet [7] 0.833 0.892 0.029
M2UNet 0.855 0.907 0.025

ClinicDB

UNet [3] 0.767 0.824 0.019
UNet++ [4] 0.729 0.794 0.022

SFA [14] 0.607 0.700 0.042
PraNet [5] 0.849 0.899 0.009
MSNet [6] 0.879 0.921 0.008

Hieu et al. [15] 0.787 0.844 0.019
PEFNet [7] 0.814 0.866 0.010
M2UNet 0.853 0.901 0.008

CVC-300

UNet [3] 0.639 0.717 0.022
UNet++ [4] 0.636 0.687 0.018

SFA [14] 0.329 0.467 0.065
PraNet [5] 0.797 0.871 0.010
MSNet [6] 0.807 0.869 0.010

Hieu et al. [15] 0.812 0.884 0.006
PEFNet [7] 0.797 0.871 0.010
M2UNet 0.819 0.890 0.007

ColonDB

UNet [3] 0.449 0.519 0.061
UNet++ [4] 0.410 0.483 0.064

SFA [14] 0.347 0.469 0.094
PraNet [5] 0.640 0.712 0.043
MSNet [6] 0.678 0.755 0.041

Hieu et al. [15] 0.626 0.694 0.037
PEFNet [7] 0.638 0.710 0.036
M2UNet 0.684 0.767 0.036

ETIS

UNet [3] 0.343 0.406 0.036
UNet++ [4] 0.344 0.401 0.035

SFA [14] 0.217 0.297 0.109
PraNet [5] 0.567 0.628 0.031
MSNet [6] 0.664 0.719 0.020

Hieu et al. [15] 0.589 0.655 0.037
PEFNet [7] 0.572 0.636 0.019
M2UNet 0.595 0.670 0.024

TABLE I
QUANTITATIVE RESULTS WITH PREVIOUS METHODS.

THE HIGHEST AND SECOND HIGHEST SCORES ARE SHOWN IN
BOLD AND UNDERLINE, RESPECTIVELY.

By incorporating two Upsampling stages, the dice score
improves to 0.899. Notably, when employing the complete
pipeline, the score experiences a substantial boost, reaching
0.907.

The ablation study results demonstrate our assumption that
capturing multi-level information of multiple decoder stages
will ameliorate the model’s ability to identify the polyp
objects. By combining the Multi-scale Addition stage of our
MU, the model can exploit multi-scale features of shallow
stages to complement the necessary information further, thus
attaining better performance.

Model mIoU ↑ mDice ↑ MAE ↓
Baseline 0.819 0.874 0.029

+1 Upsampling 0.827 0.882 0.030
+1 MU 0.833 0.891 0.029

+2 Upsampling 0.843 0.899 0.028
+2 MU 0.855 0.907 0.025

TABLE II
ABLATION STUDY ON THE KVASIR-SEG DATASET [9]
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Fig. 2. Qualitative results from various methods

V. CONCLUSION

In this paper, we propose the MetaFormer baseline com-
bined with UNet and our Multi-scale Upsampling block (MU)
for the polyp segmentation task. Our M2UNet is designed to
solve the problem from existing methods, which is the locality
of the standard convolution operations and the lack of attention
to the multi-level information of the decoder’s features.

We believe that capturing multi-scale features of shallow
decoder stages and combining them with the higher ones
will endow our model to attain more meaningful information
about the polyp regions. Extensive experiments and ablation
results have demonstrated the improvement of our approach
to previous methods.

Although there are some limitations of the M2UNet that
need to be improved, this is a promising method for the polyp
segmentation task. Future research should focus on leveraging
the full potential of the decoder module for more precise and
reliable polyp localization.
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