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Abstract—The muscular system is quite complex and can be
divided into smaller systems. In this paper, we focus on the
abdominal wall, in particular on the two deepest muscles that
compose it, the transversus abdominis and the obliquus internus.
Both muscles play an important role in many physiological
phenomena, such as breathing. The purpose of this paper is
to identify the co-contraction patterns of these two muscles. To
this end, we use a combination of two well-known methods.
Firstly, the kernel Fischer discriminant analysis (K-FDA) is used
to transform the data extracted from surface electromyographic
signals, acquired from one bipolar electrode, in order to build a
representation of the data that facilitates the classification. Then,
a support vector machine is used for the classification step. We
tested four types of kernel for the K-FDA, namely linear, radial
basis function, sigmoid and polynomial. Following a five-fold
cross validation, we obtained an accuracy up to 100%.

Index Terms—K-FDA, classification, support vector machine,
deep abdominal muscles, physiotherapy.

I. INTRODUCTION

The muscular system is made up of several muscles that
work in synergy. The simplest and most everyday movements,
such as breathing, require the activation and relaxation of
several muscles in the body. This system can be divided into
several sub-systems to simplify its study. For example, when
studying a hand movement, it would be more interesting to
focus on the forearm muscles. A deeper understanding of
these synergistic and antagonistic systems could allow better
rehabilitation of patients suffering from different pathologies.
Due to its anatomical position, the abdominal wall has a
central role in the transfer of forces from the trunk to the legs,
which makes the muscles that compose it a very important
part of the muscular system. The abdominal wall is composed
of five muscles. In this paper, we only focus on two of
these muscles, i.e., the transversus abdominis (TRA) and the
obliquus internus (OI), since they are the deepest muscles of
the abdominal wall, making them difficult to access. The TRA
has an important role in many physiological phenomena as
breathing or delivery. It is also involved in some pathologies,
as low back pain or urinary incontinence. More and more
physiotherapists are devoting part of their rehabilitation to

teaching their patients to voluntarily contract this muscle. On
the other hand, the OI is a synergistic muscle of the TRA
and is, for the most part, involved in the same physiological
phenomena as the TRA. However, this muscle overlaps the
TRA, which makes it difficult to acquire information on the
TRA without interference from the OI. Diverse measuring
devices are used to study the muscular system, such as
electromyography (EMG) or ultrasounds. With a single surface
EMG electrode, a mixture of TRA and OI signals can be easily
extracted [1]. Now, our concern consists in differentiating
between TRA and OI muscles using only one measuring
electrode, which is a real challenge.

Linear discriminant analysis (LDA) has been widely used,
as reduction method or as classification method; however,
not all discrimination problems can be solved with linear
method. To deal with this issue, two decades ago, the Kernel
Fisher Discriminant Analysis (K-FDA) was developed. In
this paper, we use K-FDA to transform our dataset before
applying a classification algorithm. In the last decades, a
number of classification algorithms have been developed to
solve different issues [2]–[8]. In this work, we chose the
Support Vector Machines (SVMs) because they are easy to use
and have proven to be efficient in classifying EMG signals.
Actually, several studies have applied these types of algorithms
for different EMG signals classification purposes. Indeed,
SVMs have been used to classify hand gestures [4], [8], arm
or finger movements [2], [6], wrist-motion [3] or muscles
and neuromuscular diseases [5], [7]. Now, these studies have
considered surface muscles, as biceps brachii and medial vatus,
whilst we are concerned by deep muscles. One team has
worked with needle electrodes [5] whereas others [2]–[4],
[6]–[8] used Ag/AgCl electrodes, while we used Datwyler
softpulse™ dry electrodes.

The aim of our approach is to identify the co-contraction
patterns of the two deep abdominal muscles mentioned above,
namely the TRA and the OI. To this end, we first labelled the
signals used in the following analyses according to four groups
corresponding to the co-contraction pattern. The method pre-
sented in this paper consists in applying a K-FDA to the
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initial data and then classifying the signals projected into the
new basis into these four groups. In this contribution, Section
II is devoted to the presentation of the method. Section III
illustrates the results of classification and Section IV concludes
this work and opens on some perspectives.

II. MATERIALS AND METHODS

A. Acquisition and preprocessing

The data used in this paper come from an experiment
conducted on two healthy volunteers (one female and one
male). During the experiment the volunteers had to perform
nine different exercises, which are presented in Table I.
The exercises were performed in two positions, standing and
supine.

TABLE I
LIST OF EXERCISES

Exercises in supine position Exercises in standing position
Coughing Coughing
Complete exhalation Complete exhalation
Draw-in Draw-in
Crunch hold 2s Held arm curl with elastic
Linked crunch Fast arm curl with elastic
Circle straight leg Knee raise

To acquire the signals, we used a portable EMG device,
called Blueback physio® and developed by the Blueback
company (see Fig. 1). This device is by design composed of
two bipolar electrodes which are able to acquire two distinct
signals. In our studies, we kept the signals from each of the
electrodes in order to double the number of usable signals
per patient. Each of these signals was saved and preprocessed
independently.

Fig. 1. The Blueback physio® device

The sampling rate of the device was equal to 500 Hz. The
electrodes were placed 2 cm inward and 2 cm downward of the
antero-superior illiac spine. The preprocessing is decomposed
in 4 steps. First, we re-sampled the signals up to a sampling
rate of 1000 Hz. Then, we applied a highpass filter with a
cut-off frequency of 30 Hz to the re-sampled signals and we
took the absolute value. Lastly, we segmented the signals into
samples of 1 second and a total of 360 samples of 1 s were
used. During the experiment, ultrasound images were obtained

to get the ground-truth on the contraction of the two muscles
of interest every second. We measured the thickness of each
muscle on all images (see Fig. 2). A muscle was considered
to be contracted as soon as its thickness exceeded a threshold
fixed to the average thickness of this muscle for a given subject
and body position (supine or standing).

Fig. 2. Annotated ultrasound image, with the obliquus internus (in blue) and
transversus abdominis (in yellow) muscles

B. Features

As detailed hereafter, we extracted 23 features of interest,
including temporal, frequency and time-frequency features.
The choice of these features comes from a bibliographical
search in existing EMG classification studies as well as in
other fields of research.

For each of the following features, let us assume that we
have one signal x (corresponding to the signal collected on
one electrode at the sampling frequency fs) of N temporal
points long, where N is equal to 1000. The periodogram and
frequency are denoted by P and f respectively.

1) Temporal features: We have calculated 12 temporal
features. The first temporal feature is the duration (expressed
in second) of a contraction burst, noted WL. It corresponds to
the difference between the time when the muscle contraction
begins, i.e., when the amplitude exceeds a threshold fixed at
a quarter of the maximum value of the absolute value of the
amplitude and the time when it ends, i.e., when the amplitude
falls below this threshold.

Then, we calculated the mean average value, MAV , and the
root mean square, RMS, of the amplitude of the time signal.

The next three features are the Hjorth parameters, which are
activity, mobility and complexity. The activity, A, represents
the variance of the signal x. The mobility, mo, is the ratio
between the variance of the first derivative of x and the
variance of x,

mo =

√
σ2(x′)

σ2(x)
(1)

where x′ is the first derivative of x and σ2 represents the
variance of the signal. The complexity, c, allows to compare
the signal to a sine wave:

c =
mo(x′)

mo(x)
(2)
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where mo(x) is the mobility of the signal x and mo(x′) is
the mobility of the first derivative of x.

We also used static features such as the skewness, sk, which
is the coefficient of asymmetry and the kurtosis, ku, which is
the signal flattening coefficient respectively given by:

sk =

∑N
i=1(xi − x̄)3

(N − 1) ∗ σ3
(3)

ku =

∑N
i=1(xi − x̄)4

(N − 1) ∗ σ4
(4)

where x̄ is the mean of x and σ is its standard deviation.
The last temporal features are classical entropy estimators

such as sample entropy, SampEn, [9], approximate entropy,
ApEn, multi-scale entropy, mse, and Shannon entropy, SEn.
To calculate these features we used a library provided by
Python.

2) Frequency features: We have considered 4 frequency
features. The mean frequency, fm, is calculated on peri-
odograms obtained with the Welch method (256-point Hanning
window, 50% overlap, NFFT frequency points) [10]:

fm =

∑NFFT
i=1 fi ∗ P (fi)∑NFFT

i=1 P (fi)
(5)

where NFFT is the number of frequency points which is
equal to N .

As for the median frequency, fmd, it is such as∑nfmd

i=1 P (fi)∑NFFT
i=nfmd

P (fi)
= 1 (6)

where nfmd is the index of the fmd value in the frequency
vector. The third feature is a ratio of power P2 between the
sum of the powers in the [100; 200] Hz band and the sum of
the total power:

P2 =

∑200
i=100 P (fi)∑NFFT
i=1 P (fi)

(7)

Lastly, we computed a cut-off frequency, fp, which has been
determined by quantifying the power of the signal spectrum
compared to a fixed threshold, th:∑nfp

i=1 P (fi)∑NFFT
i=1 P (fi)

× 100 > th (8)

where nfp is the index of the fp value in the frequency vector.
3) Time-frequency features: We have calculated 7 time-

frequency features. First, we applied the Empirical Mode
Decomposition (EMD) [11] to decompose the signal into
mono-components called Intrinsic Mode Functions (IMFs),
where an IMF is an oscillating function with zero mean. The
features extracted from this EMD are the median frequencies
of the first 3 IMFs. In addition, a wavelet transform has been
applied on the signals [12]. Three features were extracted from
this representation, namely the maximum amplitude, mWT ,
as well as the frequency, fWT , and the time, tWT , when this

maximum mWT occurs. Another feature, the coefficient of
flatness, TFflatness, was calcuted on this representation:

TFflatness =

∏L−1
n=0

∏M−1
m=0 S̄[n,m]

1
ML

1
ML ×

∑L−1
n=0

∑M−1
m=0 S̄[n,m]

(9)

where L is the number of raws of the wavelet transform, M
the number of columns and S̄ is the absolute of the squared
wavelet transform.

4) Reduced learning set: Given these 23 features, we used
a wrapper algorithm [13], [14], [15] to find an optimal base
containing 5 features. The 5 selected features are the frequency
fp, the ratio P2, the coefficient of flatness TFflatness and two
classical entropy estimators, which are the multi-scale entropy
mse and the sample entropy SampEn.

C. Kernel Fisher Discriminant Analysis (K-FDA)

The K-FDA is an adaptation of the LDA, where the dot
product is replaced by a kernel. The purpose of the K-FDA is
the same as that of LDA, which is to maximize the between-
class variance and to minimize the within-class variance. The
optimization problem can be written as

max
θ

θTBθ

θTWθ
(10)

where θ ∈ Rns×1 corresponds to the eigenvector with the
maximum eigenvalue, also called Fisher axis or Fisher direc-
tion. ns is the number of samples. B ∈ Rns×ns corresponds
to the between-scatter matrix, defined by:

B(i, k) =

c∑
j=1

(mj(i)−m∗(i))(mj(k)−m∗(k))
T (11)

where c is the number of classes, mj ∈ Rns×1 is the mean
vector of the j-th class, such as its i-th entry is

mj(i) =
1

nj

nj∑
k=1

K(w(i),w(k)) (12)

where nj is the number of samples of the j-th class, w is the
features vector, K is the kernel function and m∗ ∈ Rns×1 is
such that its i-th entry is

m∗(i) =
1

ns

ns∑
k=1

K(w(i),w(k)) (13)

where w(d) (d = i, k) ∈ Rnf×1, nf being the number of
features. Finally, W ∈ Rns×ns is the within-class scatter
matrix, given by:

W (i, k) =

c∑
j=1

nj∑
η=1

Kj(i, η)Hj(η, k)K
T
j (η, k) (14)

with Kj ∈ Rns×nj such as:

Kj(i, k) = K(w(i),wj(k)) (15)

where wj is a feature vector of the jth class. Hj ∈ Rnj×nj

is the centering matrix, Hj = I− 1
nj
J , where I ∈ Rnj×nj is

the identity matrix, J ∈ Rnj×nj is a matrix of all 1’s. We use
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four kernels for this step, which are linear (LINEAR), radial
basis function (RBF), sigmoid (SIGMOID) and polynomial
(POLY).

D. Classification

The classification algorithm used in this study is a kernel
support vector machine (SVM). The principle of this algorithm
is to project the feature vector into a higher-dimensional space
in order to make the classes more separable. This problem
consists in optimizing the following dual problem:

min
α

1

2

ns∑
i=1

ns∑
j=1

y(i)y(j)K(w(i),w(j))α(i)α(j) (16)

where ns is the number of samples, K(w(i),w(j)) is the ker-
nel between the vectors of features w(i) and w(j), y ∈ Rns

corresponds to the vector of true classes and α ∈ Rns is the
vector of Lagrangian multipliers. The decision function, d, can
be expressed as:

d(w(p)) = sgn(

ns∑
i=1

y(i)α(i)K(w(i),w(p)) + b) (17)

where w(p) is the vector of features to be classified and b
is the threshold. We tested three different kernels for this
step, namely linear (LINEAR), radial basis function (RBF)
and polynomial (POLY) kernels.

III. RESULTS

A. Classes

We considered four classes. Each class represents one
scheme of co-contraction of the two muscles under study.
In the OI class, the obliquus internus is the only contracted
muscle. The R class corresponds to no contraction. In the
third TRA class, the transversus abdominis is the only muscle
contracted. Lastly, the group TRA-OI is constituted of signals
where both muscles are contracted simultaneously.

B. Data projection following K-FDA

As indicated before, we tested four kernels in the K-
FDA. The linear kernel discriminant analysis was not able to
discriminate the different classes, hence it is not represented in
this section. Since the polynomial and sigmoid kernels led to
comparable performance, we represent on Fig. 3 the projection
of the original data into the K-FDA database along the first
three discriminant axes using the sigmoid kernel. From this
figure, it is easy to discriminate the four classes. However,
some samples of different classes are too close, which may
create some confusion for a classification algorithm. The first
discriminant axis allows us to make a first separation. As a
matter of fact, on one side, we can distinguish TRA-OI and
OI and, on the other side, R and TRA are grouped. Moreover,
the second discriminant axis makes it possible to dissociate the
remaining groups, in particular by separating TRA-OI from OI
and R from TRA.

Fig. 3. Data projection along the first three discriminant axes of K-FDA using
a sigmoid kernel

In a second step, we represent on Fig. 4 the projection
using the RBF kernel, which allows to obtain the best trade-off
between minimizing the within-class variance and maximizing
the between-class variance. The four classes are well spaced
out, the within-variance being very low and the between-
variance being very high. The first discriminant axis separates
two clusters. The first one is composed of TRA-OI and TRA
classes, while the second cluster is formed by R and OI
classes. In addition, the second discriminant axis allows the
separation of the groups constituting the above-mentioned
clusters. Indeed, it allows to dissociate TRA-OI from TRA
and R from OI.

Fig. 4. Data projection along the first three discriminant axes of K-FDA using
a RBF kernel

C. Performance

The performance of the classification algorithms was tested
following a k-fold cross-validation. We used 5 equally dis-
tributed subsets. Then, we calculated the accuracy on the
confusion matrix.

Table II reports the performance of the classification algo-
rithms according to the kernel used in the discriminant analysis
and the one used in the SVM classifier. On the one hand, the
discriminant analysis with linear kernel leads to a very low
classification performance, with an accuracy of 48.89%. On
the other hand, we observe that, whatever the kernel used in
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the classifier, the RBF kernel used in the discriminant analysis
leads to 100% accuracy. This result is not surprising given
the representation obtained from the RBF kernel discriminant
analysis. Discriminant analysis with POLY and SIGMOID
kernels also allow us to obtain satisfactory results with an
accuracy equal to 99.72% and 97.78% respectively when
coupled with a SVM classifier using a RBF kernel.

TABLE II
PERFORMANCE OF THE ALGORITHMS

Kernel of K-FDA Kernel of classifier Accuracy

RBF RBF 100%
RBF POLY 100%
RBF LINEAR 100%

POLY RBF 99.72%
POLY LINEAR 99.72%

SIGMOID RBF 97.78%
SIGMOID POLY 97.22%
SIGMOID LINEAR 97.78%
LINEAR RBF 48.89%
LINEAR POLY 34.72%

IV. CONCLUSION

The main results of this contribution are the great perfor-
mance of classification obtained by the means of K-FDA.
The RBF kernel discriminant analysis has achieved the best
results with 100% of accuracy. Likewise, the accuracy of
POLY and SIGMOID kernels was satisfying with a ratio of
99.72% and 97.78% respectively. These results show that this
method is able to differentiate the co-contraction patterns of
two deep muscles of the abdominal wall. We can compare
our results with those of Alkan et al. [2] and Castiblanco
et al. [8] who also used a SVM for the classification step.
They achieved 99% and 82%, respectively. Our results are
in the same range. However, they intended to classify hand
and forearm movements, whereas we wanted to distinguish
co-contraction patterns. Moreover, in [8], they used a total of
six electrodes (four on the right arm and two on the left arm)
to collect the signals. As for Subasi et al. [7], they achieved
99% of accuracy to classify neuromuscular disorders. Unlike
us, they used needle electrodes to acquire the signals, which is
an invasive technique even if it eliminates crosstalk between
muscles. The use of a needle EMG is not possible in our
case since it can only acquire information on a single muscle.
Now, none of the previous studies addressed the identification
of co-contraction patterns with only one bipolar electrode for
the acquisition, and, to the best of our knowledge, no such
study has been proposed. We are also aware of the current
limitations of our study. Indeed, we exploited signals from
only two volunteers, which can lead to bias because EMG
signals are highly variable between subjects. Moreover, both
volunteers were in good physical condition and we know that
physiological pathology can change co-contraction patterns,
as well as intrinsic muscle functioning. However, this study

proved that it was possible to identify the co-contraction
patterns of two deep abdominal muscles from a single surface
electrode. In a future work, we plan to acquire more signals to
confirm our results on a larger database. It would be interesting
to acquire these signals on healthy and pathological subjects.
Finally, this type of algorithm can bring benefits in research
and clinical practice in physiotherapy. Indeed, an algorithm
capable of recognizing muscle patterns can be useful in the
study of muscular system functioning as a set of synergistic
and antagonistic muscles.
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