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ABSTRACT
This paper investigates a general framework for the regis-
tration of 3D magnetic resonance (MR) and 2D ultrasound
(US) images. This framework is divided into a rigid slice-to-
volume 3D-2D MR/US registration and a 2D-2D US/MRI fu-
sion algorithm to generate an image having a better resolution
than the MR image and a better contrast than the US image.
The accuracy of the joint registration and fusion method is
analyzed by means of quantitative and qualitative tests con-
ducted on experimental phantom and realistic synthetic data
generated from an in vivo MRI volume, with a specific atten-
tion to endometriosis treatment.

Index Terms— Registration, Image fusion, Magnetic
Resonance Imaging, Ultrasound Imaging, Endometriosis.

1. INTRODUCTION

Endometriosis is a complex disease that occurs when the tisue
that normally lines the uterus grows outside of it, and bleeds
cyclically as it is under the influence of the menstrual cycle. It
is very often located in the ovaries, the intestine or the bladder
or, more rarely, on other internal organs. The average time to
detect endometriosis is about 7 years during which patients
suffer from physical and psychological consequences, such
as debilitating chronic pelvic pain and infertility.

Endometriosis diagnosis is based on two medical imaging
modalities, namely ultrasound (US) and magnetic resonance
(MR) images. The main treatment consists of laparoscopic
surgery that requires a precise localization of the endome-
trial implant and its depth of infiltration. Therefore, US and
MRI play a crucial and complementary role on endometrio-
sis examination. Transvaginal and transrectal US scanners
use high-frequency probes, resulting in high spatial resolu-
tion images that allow a precise localization and characteri-
zation of small lesions. In particular, US images allow lesion
depth of infiltration to be evaluated. However, US images are
characterized by a low signal to noise ratio and a limited field
of view. On the contrary, MR images provide a wide field
of view of the patient anatomy with a good SNR ratio, but
small lesions cannot be detected because of its limited spatial
resolution close to 1 to 2 mm. Based on the previous clini-
cal rationale, a US-MR image fusion algorithm was recently

proposed to estimate a hybrid image gathering the advantages
of both modalities in the context of endometriosis diagnosis
[1]. The fused image was shown to have a spatial resolu-
tion comparable to the US image and SNR/contrast close to
the MR image. Our final objective is to use this fused image
during surgery using augmented reality. However, the 2D-2D
fusion algorithm of [1] requires registered 2D US and MR im-
ages. In practical applications, US and MRI examinations are
performed separately, resulting in non aligned 2D US images
and 3D MRI volumes. A 3D-2D registration step is thus re-
quired before fusion, leading to a 2D US image aligned with
an oblique MR slice extracted from the 3D volume.

Existing registration approaches for MRI and US can be
classified into two categories, namely, intensity-based [2] and
feature-based methods [3]. Intensity-based methods use cost
functions commonly based on the sum of squared distances
[4], the mutual information [5], or the cross-correlation [6].
These methods are automatic and use the entire image without
any post-processing. Feature-based methods extract features
from the image such as surfaces, volumes, and contours and
use them to construct similarity measures between images [3].
Most of the current state-of-the-art algorithms in the medical
field focus on 3D/3D [7], [8] or 2D/2D registration, i.e., on
the alignment of two volumes or two images. An iconic slice-
to-volume registration was also studied in [9] in the context of
image guided surgeries. The idea is that low-resolution sin-
gle photon emission computed tomography can be registered
with a high-resolution MRI volume, which could be subse-
quently fused with live-time interventional MRI. A 3D mu-
tual information registration method is used for the first step,
and a robust slice to volume registration algorithm with spe-
cial features for the latter. A robust patch-based correlation
ratio was investigated in [10] for the registration of 3D US
and MR images. More recently, deep learning has been sug-
gested as a tool to build efficient registration methods, e.g.,
learning appropriate features from the images using training
data [11].

The main objective of this work is to propose a rigid slice
to volume registration algorithm inspired by [12], and to use
it as a prior step for US/MR image fusion. The algorithm
of [12] was pioneer in using discrete methods to solve the
challenging slice-to-volume registration task, giving promis-
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ing results when compared to a continuous approach. The
results can be further refined using a continuous method, gen-
erating more accurate estimations. The fusion algorithm fol-
lowing that registration step is based on two image formation
models highlighting the advantages and drawbacks of each
modality, as originally proposed in [1]. Both qualitative and
quantitative results show the interest of fusing MR and US
images. The resulting fused images, benefiting from the 3D-
2D registration step, is better resolved than the MR slice and
less degraded by noise compared to the US image.

The remainder of the paper is organized as follows. Sec-
tion 2 presents the 3D-2D registration algorithm based on
a discrete graph-based formulation to solve rigid slice-to-
volume registration. The 2D-2D fusion algorithm between
US and MR images is summarized in Section 3. Experiments
are presented and discussed in Section 4. Conclusions and
perspectives are finally reported in Section 5.

2. US-MRI SLICE-TO-VOLUME REGISTRATION

The slice-to-volume registration algorithm proposed herein is
based on the method in [12]. A 2D US image is registered to
a 3D MR volume, by searching the best matching MR slice,
not necessarily following one of the three orthogonal direc-
tions of acquisition. This slice is defined by three rotation an-
gles and three translation parameters. Its resemblance to the
US image is based on a similarity measure, which can have
an important impact on the registration results. Note that the
proposed registration approach uses a discrete optimization
within a Markov random field framework.

Fig. 1: Schematic view of the proposed registration algo-
rithm. I represents a 2D US image, related by a geometrical
transformation π to a best-matching MRI slice π[J ].

Given an MR volume J and a 2D US image I , the goal of
the method is to estimate the rigid transformation π defined
by π = (rx, ry, rz, tx, ty, tz), containing the rotation angles r
and the translations t in the three spatial dimensions denoted
by x, y and z, that better aligns I with a slice from J . This is
achieved by solving the following optimization problem:

π̂ = argmin
π

M(I, π[J ]), (1)

where π[J ] is a slice extracted from J specified by the rigid
transformation π, as illustrated in Fig. 1 and M is the match-

ing criteria that defines the dissimilarity between the 2D im-
age I and the slice π[J ], which is inversely proportional to
a similarity measure. Each parameter of the transformation
π will be constrained to a finite set and optimized in order
to satisfy (1). More precisely, starting from an initial rigid
transformation π0 = (r0x, r0y, r

0
z , t

0
x, t

0
y, t

0
z), the space of so-

lutions is explored by sampling discrete variations of π0 to
determine the transformation associated with the slice π[J ]
best matching the image I through the similarity measure M .
For a maximum size ωi and a quantization factor ki, the vari-
ations of the variable vi associated with one component of π
are constrained to be in [0,±ωi

ki
,± 2ωi

ki
, ...,±kiωi

ki
]. After each

iteration, the maximum size ωi is decreased by a factor αi to
allow a finer exploration of the search space. The total num-
ber of resulting values of vi at iteration i is li = 2ki+1. Note
that 0 is also included because the current parameter value
can be preserved. For example, when the rotation variable rx
is considered, for ω0 = 0.4 and k0 = 2, the search space for
v0 is [r0x, r

0
x ± 0.2, r0x ± 0.4]. Since the number of possible

solutions is exponential, it is not possible with a reasonable
time to explore all the possible values of π. Instead, as ex-
plained in [12], only variations for all pairs of variables can
be considered leading to an optimization algorithm referred to
as Fast-PD [13]. Fast-PD is a discrete optimization algorithm
based on principles from linear programming and primal dual
strategies, which generalizes the α-expansion method [14].
Using the final discrete solution as an initialization, a con-
tinuous optimization strategy based on a simplex method is
finally run to further improve the result.

3. A 2D/2D US-MR FUSION MODEL

Once the registration between the MR and US images has
been performed, the MR slice π[J ] that best matches the US
image I has been extracted. However, the dissimilarities be-
tween the two kinds of images, e.g., the differences in reso-
lution, contrast and noise still make it difficult to fully take
advantage of the properties of each modality for endometrio-
sis surgery. Our idea is to fuse MR and US images in order
to summarize the important information from both modalities
and to produce a more informative image that will be super-
imposed to the video stream collected during surgery using
augmented reality. Since MR and US images have different
properties, the following two observations models can be used
(see [1] for more details):

π[J] = SHxm + nm,

I = xu + nu,
(2)

where xm ∈ RN is the non-observable high-resolution vec-
torized MR image, π[J ] ∈ RM is the low-resolution ob-
served MR image, nm ∈ RN is an independent identically
distributed (i.i.d.) additive white Gaussian noise with vari-
ance σ2

m, H ∈ RN×N is a block circulant with circulant
blocks matrix modelling the blurring effect of the MRI point
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spread function (PSF) with circulant boundary conditions,
S ∈ RM×N (with N = d2m) is a decimation operator with
a decimation factor d. On the other hand, I ∈ RN is the
vectorized observed B-mode US image, xu ∈ RN is the vec-
torized noise-free US image and nu ∈ RN is an i.i.d. additive
log-Rayleigh noise sequence with localization parameter γ.
Following [8] [1], a polynomial function is used to link the
two images:

xu = f
(
xm,∇xH

mu
)
, (3)

where f : RN ×RN → RN is an unknown polynomial func-
tion of the image xm, its gradient, and the scan direction
u. The polynomial function will be denoted as g (x,u) =
f
(
x,∇xHu

)
to shorten equations. This leads to the follow-

ing optimization problem:

x̂ = argmin
x

1

2
∥π[J]− SHx∥2︸ ︷︷ ︸

MRI data fidelity

+ τ1∥∇x∥2 + τ3∥∇g(x,u)∥2︸ ︷︷ ︸
regularization

+ τ2

N∑
i=1

[
exp(Ii − gi(x,u))− γ(Ii − gi(x,u))

]
︸ ︷︷ ︸

US data fidelity

that can be solved using the proximal alternating linearized
minimization (PALM) [1].

4. EXPERIMENTS

4.1. Phantom data

This section evaluates the proposed joint registration/fusion
method combining a rigid 3D-2D registration and an MR
and US slice fusion on a phantom data. The experimental
phantom was designed to mimic uterus and endometrium
responses to MR and US imaging. It was made of a beef
steak on top of which was stuck a polyvinyl alcohol (PVA)
phantom, using cyanoacrylate instant glue. The beef meat
is composed of muscular tissues and its echogenicity and
response to MR are similar to those of uterus tissue. The
PVA phantom has roughly the same echogeneicity as the
beef meat, but has different magnetic properties resulting
in high contrast in the MR image. From this viewpoint, its
properties are similar to those of endometrium. Finally, the
glue between the two structures is visible on US images due
to their high resolution and absent in MR image because of
its limited resolution, mimicking the depth of penetration
information, a crucial element for the surgery. MRI acqui-
sitions were performed using a 3T clinical imaging system
(Philips Achieva dStream, Inserm/UPS UMR 1214, ToNIC
Technical plateform, Toulouse, France). Axial fat-suppressed
T1-weighted sequences (multishot mode; 4 mm slice thick-
ness; voxel matrix 4 × 1 × 4 mm) and axial, sagittal and
coronal T2-weighted sequences (multishot mode; 2 mm slice
thickness; voxel matrix 0.8 × 2 × 2 mm) were acquired. For

US image acquisition, the phantom was immersed in a bucket
full of water. US examination was performed using a Volu-
son S10 system (General Electrics, USA). All images were
acquired with a 10-MHz linear array transducer [15].

The sizes of the acquired images are (600 × 600) for the
US, and (320 × 320 × 90) for the MRI volume. The field
of view of the MR image is wider than that of the US im-
age. Therefore, the MR volume was manually cropped to
(100× 100× 90) to ensure similar fields of view for the two
modalities. Finally, a despeckling of the US image and a bicu-
bic interpolation of the MR image were performed to ensure
the same pixel size in MR and US images.

For the 3D-2D registration task, the ground truth was
manually constructed by searching into the MR volume the
best slice matching the 2D US image acquired while scan-
ning the phantom. Fig. 2 shows the MR slice manually
registered to the considered US image. The registration algo-
rithm proposed in this work was then tested using different
initialization settings, representing MR slices whose positions
varied from small to more significant perturbations from the
manual ground truth.

(a) US image (b) Ground truth MR

Fig. 2: Pair of MR slice and US image corresponding to man-
ual 3D-2D registration.

The intensity-based metric used for this example is the sum
of squared differences (SSD) defined as follows (for two vec-
torized images X and Y ):

SSD(X,Y ) =
∑
i∈Ω

[X(i)− Y (i)]2, (4)

where Ω is the region of interest (here the full image). This
measure is not always adapted to two different image modal-
ities such as MR and US images. However, it is simple and
deserves to be considered as a reference.

The performance of the registration method was evalu-
ated qualitatively through visual inspection of the registered
image pairs, and quantitatively using the root mean square er-

ror (RMSE) defined as: RMSE =
√

1
N ∥π̂[J ]− xtrue∥22 where

xtrue is the MR slice extracted manually to best match the
US image, and π̂[J ] is the MR slice automatically estimated
by the registration algorithm. Moreover, the performance of
the proposed algorithm was also evaluated after the fusion
step, using the contrast-to-noise ratio (CNR) and the profile
slope between two structures computed on the fused image.
For two patches extracted from two different structures (PVA
phantom and beef steak in this case), the CNR is defined as
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CNR =
|µi−µj |√
σ2
i+σ2

j

where µi, µj , σ
2
i , σ

2
j are the means and stan-

dard deviations of two blocks of pixels.

Figs. 3 (a) and (c) show two initial slices given as input
to the registration algorithm, corresponding to close and far
locations from the ground truth. The registration results ob-
tained for these initializations are displayed in Figs. 3 (b) and
(d), showing that the estimated MR images are close to the
ground truth of Fig. 2 (b) in both cases.

(a) Initial slice (b) Estimated slice after registration

(c) Initial slice (d) Estimated slice after registration

Fig. 3: Image registration results obtained using an initializa-
tion slice with a small then an important deviation from the
manual ground truth.

The following quantitative analysis focuses on the first set
of images presented in Fig. 3. The RMSE between the ground
truth and estimated MR images is 7e−4, which is very promis-
ing. This result shows that using SSD as a similarity metric
can be sufficient for this experimental case, due to the simi-
larity between the images acquired on the phantom.

As explained previously, the second step of the proposed
algorithm consists of fusing the extracted MR slice (after reg-
istration) and the US image. Fig. 4 shows the fused image,
which has a good contrast, comparable to the MRI, and a
good spatial resolution similar to the US image. Moreover,
the fused image can differentiate neighbouring structures and
highlight small structures as the glue, contrary to the MR im-
age. For example, the part between the PVA phantom and
the glue is not distinguishable in the MRI, while it is clearly
visible in the US and fused images. These results are con-
firmed in Table 1 presenting the CNR values and the slopes
computed at the frontier between the steak and the glue. Note
that the slopes are commonly used as an indicator of spatial
resolution in US imaging.

MRI US Fused image
CNR 54.21 dB 32.37 dB 43.17 dB
Slope 0.3× 10−2 1.5× 10−2 1.8× 10−2

Table 1: CNR and slope values after fusion.

Fig. 4: Fused image

4.2. Synthetic data from real MR acquisition

The joint multimodal registration and fusion task is challeng-
ing in most medical applications, including the one targeted
by this study, i.e., endometriosis detection and localization.
The simulations presented in this section have been obtained
using a real high resolution MR image that has been degraded
to generate an image close to that obtained for endometrio-
sis surgery. The 3D high resolution MR volume corresponds
to a real pelvic MRI capturing the uterus, bladder and en-
dometriosis lesions. A blurred and noisy 3D MRI is then
generated from this high-resolution MR volume. More pre-
cisely, the HR volume was contaminated by an additive white
Gaussian noise (SNR = 21.5 dB), and the blurring kernel was
a 2D Gaussian filter of standard deviation σ2 = 4. The
ground truth high-resolution MR image is shown in Fig. 5
(a), whereas the initial slice extracted from the degraded vol-
ume and used as an input to the registration algorithm is dis-
played in Fig. 5 (b). A third order polynomial (see [1] for
details) was used to generate the clean US images from the
corresponding clean high-resolution MR image, together with
log-Rayleigh additive noise, yielding the image displayed in
Fig. 5 (c) (SNR= 8 dB).
The intensity-based metric used in this section is the mutual
information. It is a measure of image matching that is of-
ten used for two different image modalities. It quantifies the
“amount of information” provided by one random variable X
given that the other random variable Y is observed and is de-
fined as:

MI(X,Y ) =
∑

x∈ΩX

∑
y∈ΩY

p(x, y) log

[
p(x, y)

p(x)p(y)

]
, (5)

where ΩX and ΩY are the regions of interest for the two im-
ages X and Y .

Given the initial slice in Fig. 5 (b), Fig. 5(d) shows the es-
timated registered image, with an RMSE between the ground
truth and estimated MR images equal to RMSE = 0.02. The
fused image obtained using the two registered US and MR
images is displayed in Fig. 5(e). This image provides a good
compromise between the US and MR data. Specifically, the
fused image is less affected by US speckle and MRI blur, pro-
vides well-defined contours and good contrast compared to
the native MR and US images.

In addition to the visual inspection of the different images,
CNR was used to evaluate the contrast between two different
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(a) Ground truth MRI (b) Initial slice (c) US observation

(d) Extracted slice after registration (e) Fused image

Fig. 5: (a) True high resolution MR image. (b) Initial MRI
slice (MR low-resolution and blurred image). (c) US image
(polynomial function of the noiseless MRI with additive log-
Rayleigh noise). (d) Registration result. (e) Fused image.

structures of the images. The two regions considered here
are extracted from the uterus and the bladder. The CNR val-
ues for the MR and the US images are respectively 41 dB
and 19.17 dB. The final fused image had a CNR of 39.01 dB,
which clearly demonstrates that the fusion process improves
the contrast in the images compared to the US image.

5. CONCLUSION

This paper introduced a new framework for rigid slice to
volume 3D-2D registration and 2D-2D fusion for MR and
US images. The performance of the proposed joint regis-
tration/fusion algorithm was evaluated on experimental and
realistic synthetic data having characteristics in agreement
with endometriosis, leading to promising results. An im-
portant perspective of this work is to introduce non rigid
registration to further improve the results. A long term ob-
jective of this work is to merge the fused image with the
video stream collected during laparoscopy, allowing a safer
decision-making and therefore a more precise endometriosis
surgery.
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