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ABSTRACT 

 

Liver CT scan image analysis plays an important role in 

clinical diagnosis and treatment. Accurate segmentation of 

liver tumor from CT images is the prerequisite for targeted 

therapy and liver resection. Existing semi-automatic 

segmentation based on graph cuts or fully automatic 

segmentation methods based on deep learning have reached 

the level close to that of radiologists. To improve tumor 

segmentation on liver CT images, we propose a fully 

automatic post-processing scheme to optimize tumor 

boundaries. This method improves boundary prediction 

performance by optimizing a sequence of patches extracted 

along the initial predicted boundary. The proposed boundary 

refinement segmentation network obtains strong semantic 

information and precise location information through the 

information interaction between different branches, to 

achieve precise segmentation. The Liver Tumor 

Segmentation (LiTS) dataset is used to evaluate the relative 

segmentation performance obtaining an average dice score 

of 0.805 using the new method. 

 

Index Terms— CT data, Liver tumour, Boundary 

Refinement , High resolution segmentation 

 

1. INTRODUCTION 

 

Liver cancer is the third most deadly malignant tumor in the 

world. Globally around 905,700 people were diagnosed with 

liver cancer in 2020, and around 830,200 patients have 

already died from the disease [3]. Medical imaging 

examination has become an important examination method 

and diagnostic basis in the diagnosis of liver diseases. 

Computed tomography (CT)-based medical images can 

provide rich information including the location, structure 

and function of organs and lesions with a relative lower cost. 

In clinical diagnosis, CT image segmentation of liver tumor 

is highly relevant for the diagnosis and treatment of liver 

cancer, such as preoperative preparation for tumor resection 

and subsequent radiation therapy. However, liver tumor 

segmentation is still a challenging task due to variable shape, 

diverse pathologies, and proximity to other vital organs. In 

clinical application, liver tumor segmentation of CT scans is 

usually accomplished by expert radiologists, and it is a time-

consuming task, with the average scans taking up to 90 

minutes to complete per patient. In addition, it is a highly 

subjective job which relies on vision and work experience, 

even some experts have difficulty in giving the same 

segmentation results for one CT image. 

Conventional image segmentation including region 

growing, have achieved some results but still require 

additional human intervention such as feature selection and 

initial point determination. Recently, Deep Learning has 

become the main research direction in computer vision 

problems. Mature models successfully applied to a range of 

image processing challenges include Convolutional neural 

network, Recurrent neural network, Generative adversarial 

networks, and Transformer model. Specifically, the U-Net is 

a popular semantic segmentation network based on fully 

convolutional neural network that is widely used in 

biomedical image segmentation applications. 

Recently researchers used different methods to perform 

liver tumour segmentation from CT scans. The modified U-

Net proposed by Seo et al.[7] adds a residual path with 

deconvolution and activation structure in the skip path to 

reduce the repetition of low-resolution information. It also  

uses an extra convolution operation in skip connection to get 

achieve better feature extraction. Li et al.[6] proposed a 

hybrid densely connected U-Net, which merged a 2D Dense 

U-Net and a 3D counterpart that efficiently extracts intra-

slice and inter-slice features. Amer et al.[11] proposed 

cascaded U-Net to determine the region of interest firstly 

according to the liver segmentation prediction through the 

first U-Net, then the tumour segmentation results are 

obtained with a smaller size input with the second U-Net. 

Chen et al.[12] use more spatial features in coronal slices to 

improve the performance of liver segmentation.  In addition, 

they also designed a new deep residual module and attention 

module to fuse feature channels and spatial correlation. 

These approaches have achieved significant results in 

liver tumor segmentation. Subsequent optimization on the 

segmentation results can improve the accuracy. Christ et 

al.[13] used a 3D conditional random field (CRF) to refine 

the segmentation results from a cascaded-fully CNN model. 

Lu et al. [14] used graph cut and previously learned 

probability maps from 3D CNN to perform accuracy 

improvements on the initial segmentation. However, these 

optimization schemes need to optimize each scan 

individually, which takes a lot of time. 
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This paper proposes a fully automatic optimized 

algorithm for CT tumor segmentation based on human 

behavior and experience in segmentation. It aims to improve 

the global segmentation result by optimizing a series of 

boundary patches obtained from a coarse segmentation 

result. In addition, a new optimized network that integrates 

information from multiple resolutions is proposed. 

The remainder of the paper is organized as follows. 

Section 2 introduces the tumour segmentation refinement 

framework including boundary patch extraction and a 

modified segmentation network. Section 3 shows the 

performance of this method on public LiTS data sets. 

Concluding remarks are provided in Section 4.  

 

2. METHOD 

 

2.1. Proposed Optimization Workflow 

 

The  proposed segmentation optimization workflow shown 

in Figure 1, consists of four major steps. The first step is to 

obtain all coarse segmentation results for all images in 

training  set. The second step is to extract all image patches 

and mask patches according to the coarse prediction result 

for training neural networks. The third step is an optimized 

refined  segmentation network for boundary patch 

segmentation. The final step is to restore optimized 

boundary to the corresponding position of the image. 

 

2.2. Boundary Patch Extraction 

 

Expert radiologists complete segmentation tasks, by first 

finding the target area and then carefully depicting the 

boundary. Segmentation results provide location 

information to determine the distribution of target regions. 

Boundary patches are then obtained on these target areas for 

subsequent optimization. Initially all images are used in the 

training data set through a prediction network such as 

cascaded U-Net[8] to obtain a coarse segmentation result.  

This segmentation  is expected to  have a typical average 

dice value greater than 0.6 for obtaining boundary patches. 

In this coarse prediction results, some images cannot detect 

the presence of tumour because the size of tumor is too 

small, so we manually mark the predicted value of this part 

of the image with a 5×5 pixel block in order to ensure the 

richness of the training set. Consequently, the dataset has 

been expanded from a pair of image and ground truth set, to 

an image set, a ground truth set, and a coarse segmentation 

set as in Figure 1(a) and (b). 

All images in the coarse segmentation prediction set as 

shown in Figure 1 (d) are processed as binary images, since 

all boundary values can be easily obtained. Based on the 

coarse segmented prediction, several boundary patches are 

extracted by moving along the tumor border with each 

tumor border pixel as the centre point. At the same time, the 

boundary patches on the corresponding image and ground 

truth are acquired at the same position, which are indicated 

in Figure 1(c) and (e). The size of patches is designed as 1/8 

of the original image. However, this will inevitably lead to a 

large amount of information redundancy, accompanied by a 

large amount of computational cost. We design the sliding 

strides to be 2/3 of the patch’s length to avoid this problem. 

So far, three expanded datasets containing rich boundary 

information have been produced and used for the subsequent 

refinement stage. 

 

2.3. Boundary Refinement Segmentation 

 

We employ a multi-level information fusion network for 

accurate segmentation. As illustrated in Figure 2, this is a 

two-input single output segmentation network. The 

concatenation of original image and coarse segmentation 

image is fed into the network. The purpose of concatenating 

of the input image and the coarse segmentation result is to 

attach a strong constraint to the input image to make the 

network pay more attention to the information near the 

boundary. It can accelerate the convergence rate and 

converge in the right direction. 

 

Figure 1 Proposed optimization workflow, (a)  liver CT 

image and corresponding ground truth, (b) extracted 

coarse segmentation (c)  image and (d) mask boundary 

patches  from the coarse segmentation (e) mask 

boundary patches from the ground truth (f)  all patches 

pass the boundary refinement network (g) final refined 

segmentation result. 
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The network shown in Figure 1(f) and in more detail in 

Figure 2 comprises a feature extraction module, several 

down-sampling, up-sampling, and concatenation. As shown 

in the red dotted box in Figure 2, the basic feature extraction 

is processed with four  3 × 3 convolutions with batch 

normalization and ReLU activation function. The size of 

convolution kernels increases from 64 to 512 in a double 

increment with the number of down-sampling. As the size of 

input images has significantly decreased  compared to the 

original images, a convolution operation with a stride of 2 is 

used to accomplish the down-sampling rather than pooling. 

Although it will inevitably increase some computational 

cost, more information can be retained in the case of less 

input information. 

Each feature extraction block is passed with residual 

structure to avoid gradient vanishing caused by the increase 

of network depth. We set 7,5,3,1 feature extraction block in 

four different resolutions respectively. As the number of 

down sampling increases, more abstract features and 

information are extracted with a smaller feature size as 

shown in Figure 2. Fully fusing information in different 

layers enables the model to learn more complex patterns and 

better capture the correlation of data. When the features 

received by each basic feature extractor come from different 

dimensions, the information is fused together through a 

cascade operation as shown in the purple bar in Figure 2 to 

extract new features. The previous feature map is adjusted to 

an appropriate size using a 1×1 convolution, down sampling 

(convolution with a stride size of 2) or up sampling (bilinear 

interpolation) to satisfy the concatenation requirements. 

More fine-grained information is obtained in the low 

resolution by using multiple feature extractors which is used 

in multi-level information fusion. The fine-grained 

information in the shallow layer reduces the resolution by 

down sampling, while abstracted information in deep layer 

expands the feature size by interpolation. Features in 

different dimensions are fused together by concatenation for 

information interaction to obtain richer semantic 

information and precise location information. 

 

2.4. Reassemble Process 

 

The image patches and corresponding mask patches are 

simultaneously fed into a trained optimized segmentation 

Figure 2 The architecture of proposed boundary refinement segmentation network. 

 

Figure 3 Overlapping refined patches. 
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network to obtain accurate patch segmentation results as 

illustrated in Figure 3, which shows 7 overlapping patches. 

The segmentation results of these patches are binarized into 

0 and 1 and need to be restored to the original position 

according to the position of the boundary pixels. The 

original prediction is directly replaced with the refined 

boundary patch and form a new prediction map. Those 

overlapping pixels, where the sum of their pixel values is 

greater than or equal to 1 are considered to be a tumor pixel.  

 

3. EXPERIMENTS AND DISSCUSSION 

 

The data set used for training and testing is the Liver 

Tumour Segmentation Challenge (LiTS), which comes from 

clinical sites around the world [15]. The data set contains 

CT scans of 130 patients. All scans have been provided in 

nii format with an axial size of 512×512 (400mm×400mm). 

For each patient data includes, hundreds of cross-sectional 

scans of the abdominal cavity and annotated images 

provided by professional radiologists. We select all CT scan 

images containing tumors, for a total of 70 patients for 

training and testing. The training set and test set contained 

50 patients and 20 patients, respectively. The training set of 

patches contains 30183 patches to train the refinement 

segmentation network. The size of patch is set to 64×64 

(50mm×50mm), which reduce the amount of calculation 

cost while retaining sufficient information around the tumor 

area. This work is implemented using Keras based on the 

TensorFlow backend. The proposed boundary refinement 

network is trained for 300 epochs using Adam optimizer 

with learning rate 1e-4 to 1e-5. 

To evaluate our tumor segmentation results, we 

measure the network’s performance in terms of five indexes, 

dice sore, volume overlap error (VOE), relative volume 

difference (RVD), average symmetric surface distance 

(ASSD) and the maximum symmetric surface distance 

(MSD). Table 1 shows the results of eight different 

segmentation methods on LiTS datasets. As seen in Table 1,  

a 0.325 VOE and 0.841 ASSD is obtained based on our 

method, which is the highest score among all segmentation 

methods. We also get a relatively high score on global dice 

score as the most important evaluation metric. In addition, 

the prediction time is much faster than traditional 

optimization algorithms, and it only takes ten seconds to 

optimize 100 pictures on average. 

Figure 4 shows some visualizations of tumor 

segmentation for four patients. The green line represents the 

optimized tumor boundary, the yellow line represents the 

coarsely segmented tumor boundary, and the red line 

represents the ground truth boundary. It is seen  that our 

TABLE I. COMPARISON OF OUR MODEL WITH OTHER EIGHT TUMOUR SEGMENTATION METHOS BASED ON SIX MEASURE 

METRICS. THE SYMBOL”\” REPRESENTS UNREPORTED RESULT. BOLD FONT REPRESENTS THE HIGHEST SCORE ON EACH 

MEASUREMENT. 

Model Tumor 

Global dice Dice per case VOE(%) RVD(%) ASSD(mm) MSD(mm) 

Shape-parameter[1] \ 0.754 0.709 0.124 1.6 \ 

U-Net+Level set[2] 0.700 \ \ \ \ \ 

AHCnet[4] 0.591 0.574 1.507 0.329 1.462 7.538 

2D-dense[5] \ 0.725 0.589 \ \ \ 

H-dense U-Net[6] 0.824 0.722 \ \ \ \ 

CU-Net[8] \ 0.595 0.460 \ \ \ 

MCG-FRN[9] 0.764 0.674 0.324 0.194 4.408 7.113 

Hybrid attention[10] 0.798 0.762 0.395 0.327 0.887 7.302 

Our model 0.805 \ 0.325 0.191 0.841 7.359 

 

 

Figure 4 Visualization results of four different patients. 

Red line presents the ground truth of tumor boundary, 

yellow line present segmentation results need to be 

refined, green line presents refined segmentation 

boundary. 
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method performs well in optimization for large, medium, 

and small tumors. The optimization algorithm can 

effectively shrink or expand the rough segmentation results 

to approach the real results. Figure 5 shows the effect of the 

mask patch on the optimization algorithm. Column (a) are 

initial CT images, column (b) are segmentation results 

without the mask patch, and column (c) are segmentation 

results with the mask patch. Red, yellow, and green line 

present ground truth, coarse segmentation, and refined 

segmentation boundary respectively. When the model 

remains unchanged, the prediction results without the 

participation of the mask patch become very unreliable. For 

some small tumors, the model cannot obtain accurate 

prediction results or even completely wrong predictions, 

which are not as good as the results before optimization. 

The use of the mask patch allows the network to focus more 

on the pixels near the area to be optimized, so that the 

optimization result is closer to the real value which can be 

clearly seen from Figure 5. 

 

4. CONCLUSION 

 

In this paper, we presented a new fully automatic method to 

optimize liver tumors segmentation results from CT scans, 

which can achieve end-to-end refinement for liver tumor 

segmentation. We extract the image patches and mask 

patches according to the coarse segmentation results. We 

also designed a specialized boundary refinement network 

for patch size images segmentation. We use mask patch to 

strengthen the network's attention to the boundary area to 

improve segmentation performance. Compared to traditional 

U-shape deep neural networks, our proposed network uses 

more feature extraction block to replace the skip connection 

to obtain more information in the case of limited input 

information. We obtained an average dice score of 0.805 

and volume overlap error of 0.325 on the liver tumour 

segmentation challenge. Due to the reduced input image size, 

the problem of class imbalance is improved. 
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Figure 5 Comparison of boundary optimization 

segmentation network with and without mask patch. 

Red: Ground Truth; Yellow: Coarse Segmentation; 

Green: Refined Segmentation 
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