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Abstract—Brainwave captured through electroencephalogram
(EEG) is a promising potential biometric for subject identification.
EEG can be acquired, when the subject is exposed to external
stimuli such as visual triggers or when the subject is resting.
During biometric identification, expecting a person to be in
a resting state, is not realistic; also external stimuli introduce
artifacts in acquired EEG signals resulting in poor performance of
EEG-based biometric systems. Odours evoke natural emotions in
humans by associating strong memories with a particular smell.
As a result, odours can be a potential stimulus for generating
strong brainwaves; and unlike other triggers, odours can produce
EEG without prominent artifacts. In this paper, an olfactory
brainwave-based biometric system is proposed, where we model
the subject-specific characteristics from the EEG signals captured
using different odours as the trigger. We extract, from EEG
signals, a set of hand-crafted and diversified spectro-temporal
features to train a biometric model. Experiments conducted on
a publicly available dataset, show that it is possible to build
an odour-independent biometric system with high-performance
accuracy. Additionally, using odour-chemistry literature, we show
that a small set of carefully chosen odours are sufficient to build
a high-performance biometric system.

Index Terms—EEG Biometry, Subject Identification, EEG, Ol-
factory brainwaves, Odour Stimulus.

I. INTRODUCTION

Authentication and identification can be classified into three
groups: User Knows (UK), User Has (UH) and User Is (UI)
[1]–[3]. In UK and UH categories, users have passwords and
personal identification numbers (PIN), which can be forgotten,
lost or stolen; thus resulting in unsuccessful authentications,
information leakage and security threat. UI category is not
susceptible to such problems, because it relies on the in-
nate physiological signals from an individual and therefore,
cannot be lost or stolen. It is a better option for a reliable
biometric system. Since brainwaves capture a person’s innate
physiological behavior and fall in the UI category, a biometric
system based on brainwaves is a promising candidate for
robust and secure personal identification and authentication
[4]–[6]. In principle, the biometric system extracts patterns
from the signals captured from a person and stores them, and
then compares them with the same set of extracted features
from the signal acquired while authenticating the person [7].
Unlike fingerprints, iris and face recognition-based biometric
systems which can be compromised using gummy fingerprints,
contact lenses, and 3D printed faces respectively, EEG-based
systems are not easily compromised because the brainwaves

are unique for every individual and originate inside the brain
[8], [9]. Brain signals are characterized by original patterns for
a specific individual; thus, are capable of providing security
and privacy to a person in a biometric identification setting.
Additionally, brainwave-based biometry can be one of the best
alternatives for people with severe damage and deformation of
their physical structure because of accidents or injuries.

Electroencephalogram (EEG) is the most widely used mech-
anism to capture brainwaves, primarily because it facilitates
fine temporal resolution, low setup cost and most importantly,
is non-invasive. It is known that even slight eye movements,
changes of gaze and, jaw muscle movements can introduce
artifacts (noise) in the captured EEG signal even from a subject
who is resting, with or without their eyes open [7], [10]–[14].
Therefore, it is difficult to extract person-specific features from
such noisy EEG signals for biometric identification without
any external stimuli. To enable EEG signals to capture person-
specific characteristics, instead of resting, the subject can be
exposed to external stimuli such as listening to an audio,
or watching visuals, or following audio-visual instructions to
imagine [8], [15]–[17]. These external stimuli activate neurons
in different parts of the brain, resulting in amplified event-
related potential (ERP) which can mask the noisy artifacts.
Interestingly, both sides of the brain hemisphere have certain
frequency band ERPs which strengthen the EEG power spec-
trum when an external stimulus is present and weaken when
an external stimulus is absent [18]. Analysis of EEG signals,
acquired from subjects asked to imagine speech, for biometric
identification, has been reported in [19]–[21]. The primary
problem with audio-visual stimuli is that they introduce more
artifacts into EEG, and most importantly it is unclear if the
artifacts are a result of direct contamination of signals due
to stimuli or natural brain response to the stimuli. The mix
of brain signals and artifacts makes it impossible to segregate
and use only the brainwaves resulting from the stimulus for
extracting person-specific features to be used in a biometric
system. Therefore, unlike the audio-visual stimulus, it is better
to consider a stimulus that has little or no effect in direct
contamination of the EEG recordings.

Odour has been shown to induce significant changes to
human psychophysiology such as positive effects on mood,
stress, anxiety and depression [22]–[25]. Odour can be a
potential stimulus for generating strong brainwaves that cap-
ture person-specific characteristics for biometric identification
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because (a) odours evoke emotions resulting in brain activity
because of the strong memory-smell association in people,
and (b) unlike audio and visual triggers, odours do not result
in additional artifacts alongside the signals due to normal
brain activity. There are studies on olfactory EEG signals in
the literature, for example, [26]–[28]. Most of them focus on
odour identification or odour categorization. To the best of our
knowledge, use of EEG signals for biometric identification with
odour as a trigger has never been attempted. Our motivation
to explore odour for biometric applications was strengthened
when we observed that (a) the brain activity varied signif-
icantly for different people, and (b) an individual showed
similar brain activity across different odours. Figure 1 depicts
the t-SNE visualization of 5005 EEG signals1 acquired from
11 subjects, triggered by 13 different odours. Each subject,
represented by a different color in Fig. 1, appears together
in a cluster and more importantly, there is no overlap across
different subjects. Thus, subject-wise EEG samples form non-
overlapping and unique clusters as shown in Fig. 1 where the
EEG samples corresponding to sub10 appear in two clusters
without over-lapping with any other subject.

Fig. 1. t-SNE plot: EEG samples from 11 subjects exposed to 13 odours,
each with 35 trials; samples across subjects create non-overlapping clusters
(for example, Sub10 at two places marked shows distinct cluster)

In this paper, we propose to use the EEG signal acquired
from a person, subjected to odour stimuli, for biometric
identification. Person-specific characteristics are modeled from
the EEG signals captured with different odour as triggers. As
is common, we extract a set of hand-crafted and diversified
biomarkers in the spectro-temporal domain from the raw EEG
signal to train the biometric model. In particular, we aim to
build an odour-independent person identification system that
is suitable for realistic applications. We show through a series
of experiments, with a publicly available dataset, that it is
possible to build a high-accuracy, odour-independent biometric
system. We further demonstrate that using knowledge of
odour chemistry, a small set of carefully chosen odours are
sufficient to build a high-performance biometric system. This
is one of the main contributions of the paper. The rest of the
paper is organized as follows: in Section II, we discuss the
proposed approach for a smell-independent biometric system.

135 EEG signals per person per odour

The experimental setup is described in Section III. Results and
analysis are provided in Section IV. We conclude in Section
V.

II. ODOUR-BASED BIOMETRIC SYSTEM

The objective is to build a biometric system, using the EEG
signal acquired from a person in response to odour stimuli. We
use the features extracted from the raw EEG signal to train a
multi-class classifier. The class labels correspond to the total
number of subjects that need to be identified.

We extract both temporal and spectral features to derive
useful information from the raw EEG signal acquired in
response to odour stimuli. Specifically, we extracted (see Table
I) conventional temporal features, namely, Hjorth mobility
and complexity parameters; detrended fluctuation analysis
(DFA); fractal dimension with Higuchi (HFD) and Petrosian
algorithms (PFD); Hurst exponent (Hurst) computed on the
entire signal as mentioned in [29].

Feature Set Features Bands Dim/Channel

PyEEG

Power Spectral Intensity (PSI) and
Relative Intensity Ratio (RIR),

Hjorth mobility and complexity,
Petrosian Fractal Dimension (PFD),
Higuchi Fractal Dimension (HFD),

Spectral Entropy (Shannon’s entropy of RIRs),
Detrended Fluctuation Analysis (DFA),

Hurst Exponent (Hurst)

θ: 4-8Hz
αlow: 8-10Hz
αhigh: 10-13Hz
β: 13-25Hz
γ: 25-40Hz

9

BioSPPy
Average signal power, with

overlapping windows,
in EEG frequency

5

PyWavelets Energy, Entropy, RMS, REE, LREE, ALREE

θ: 4 - 8Hz
α: 8-13Hz
β: 13-25Hz
γ: 25-40Hz

24

TABLE I: Details of EEG features used in our experiments.

The EEG signal is transformed into a frequency domain
using fast Fourier transformation (FFT), followed by extract-
ing three spectral features, namely, power spectral density
(PSD), relative intensity ratio (RIR); and spectral entropy. In
addition, we extract discrete Wavelet transformation (DWT)
based spectro-temporal features using db4 wavelet [30], [31].
These features are: energy; entropy; root mean square (RMS);
recursing energy efficiency (REE); logarithmic REE (LREE),
and absolute logarithmic REE (ALREE). Note that these
spectral features are extracted separately for the 5 standard
EEG bands, namely, θ (4 - 8 Hz), αlow (8 - 10 Hz), αhigh

(10 - 13 Hz), β (13 - 25 Hz) and γ (25 - 40 Hz). These EEG
features are in literature (see [26]) so we do not elaborate on
them here.

PyEEG BioSPPy PyWavelets Early Late
SVM 96.74± 4.62 95.22± 6.00 93.55± 10.46 96.34± 6.92 99.72± 3.21

RF 96.62± 4.28 97.36± 2.63 97.94± 1.96 98.62± 1.59 99.80± 1.12
KNN 95.74± 6.67 95.80± 4.64 96.16± 5.21 96.80± 4.98 99.86± 3.14
ANN 95.22± 5.30 95.78± 5.22 93.41± 9.58 94.53± 10.40 99.61± 4.21

TABLE II: Average person identification accuracy and vari-
ance over 13 leave 1-odour out experiments.

The odour-based biometric system is a multi-class classifier
with features extracted from the EEG signal as the input.
We ensure that the odours (used as stimuli for acquiring
EEG data) used for testing the biometric system are not

1141



PyEEG BioSPPy PyWavelets Early Late # odours
SVM 49.70 50.04 50.93 53.16 50.37

RF 55.30 57.84 49.42 52.12 55.71 1
KNN 45.69 46.75 51.80 55.00 47.86
ANN 50.06 52.19 55.37 56.08 51.69
SVM 62.99 61.79 61.49 62.92 62.92

RF 67.08 72.11 65.10 65.16 64.67 5
KNN 62.99 62.66 64.25 64.35 63.21
ANN 63.25 63.54 62.50 61.95 64.06
SVM 90.48 90.04 83.03 89.18 88.74

RF 87.62 97.49 91.17 99.74 95.93 10
KNN 84.94 89.44 85.54 87.53 88.66
ANN 85.71 92.29 99.22 100.00 97.4

TABLE III: Odour biometric with random odour selection.

part of the training data, thus making the biometric system
independent of odour. While one can hypothesize that an
increase in the number of odours used during training will
result in a better-performing biometric system, we show that
it is indeed possible to achieve a high-performance biometric
system, using as few as 4 or 5 odours derived by exploiting
an understanding of odour chemistry.

III. EXPERIMENTAL SETUP

We use the publicly available odour-EEG dataset (ODOUR-
DB) [32] for training our odour-independent biometric system
and validating its performance. The ODOUR-DB consists of
a 32 channel EEG signal recorded using the Cerebus system
from 11 healthy individuals (8 males and 3 females), right-
handed, aged 24.9±3.0 years in response to 13 odour stimuli
(rose, caramel, rotten smell, canned peaches, excrement, mint,
tea, coffee, rosemary, jasmine, lemon, vanilla, and lavender).
Of the 32 channels, 2 are reference channels, making it 30
usable channels for analysis. The electrodes for collecting EEG
are arranged according to the international 10-20 system, and
sampled at 1 kHz. Each sample collected was for a duration
of 10 seconds, called a trial. In total, ODOUR-DB has 11
(participants) × 13 (odours) × 35 (trials) resulting in a total
of 5005 EEG samples.

We used (a) PyEEG [29] toolbox, specifically designed for
EEG signal analysis, to extract the temporal features in addition
to spectral entropy and relative intensity ratio features, (b)
BioSPPy toolbox [33] to extract spectral features from each
EEG band and (c) PyWavelets toolbox [34] to extract DWT
based features. In all our experiments, PSD and DWT features
are extracted for a window length of 25 msec with an overlap
of 12 msec, further we decomposed the EEG signal till the 7th

level (DWT) for the bands θ, α, β, γ. The complete list of
the features used in our experiments is captured in Table I.
In all, we had three sets of feature consisting of 9 (PyEEG),
5 (BioSPPy) and 24 (PyWavelets) features extracted per
channel. Note that each EEG signal consists of 30 channels.

To build a biometric identification system, we implemented
4 different classifiers, namely, Support Vector Machine (SVM),
Random Forest (RF), K-Nearest Neighbour (KNN) and Artifi-
cial Neural Network (ANN) from the scikit-learn python
toolbox. SVM classifier is based on libsvm, with regulariza-
tion set to 1 with a linear kernel. In the RF classifier the number

of trees was set to 100, and in KNN the number of nearest
neighbors was set to 5. In ANN, we have used 100 hidden
layer neurons, with relu as the activation function and Adam
stochastic gradient-based optimizer for weight optimization
of batchsize 2. The learning rate was constant and set as
r = 0.0001. We used classification accuracy as a metric to
evaluate the performance of the biometric system.

IV. RESULTS AND ANALYSIS

In the initial set of experiments, we took EEG signals
corresponding to 12 out of the 13 odours (leave 1-odour
out) available in the dataset to model the subject’s brainwave
characteristics and train a biometric identification system.
Experimental results with three different feature sets and 4
different classifiers are shown in Table II. Also included
in Table II are results associated with (a) early fusion (the
features from PyEEG, BioSPPy and PyWavelets are con-
catenated into one large feature set which is then used for
classification) and (b) late fusion (aggregates predictions of
three individual classifiers trained using the three feature sets
separately). The leave 1-odour out experiment shows that all
12 combinations of feature sets and classifiers result in com-
parable performance. However, late fusion-based biometric
system performance shows average accuracies of around 99%.

In the next set of experiments, we picked a subset of odours,
at random, to model the subject and tested on the remaining
odours. Table III shows the result for 1, 5, and 10 odours used
for subject modeling and the remaining 12, 8 and 3 odours are
respectively used for testing. As can be seen, the performance
of the biometric system increases with an increase in the
number of odours used for modeling the subject. Observe that
all the systems using 10 odours to model the subject perform
much better (accuracies in the range 83.03% - 100%) than
the best-performing 5-odour (72.11%) and 1-odour (57.84%)
systems. This is in line with our hypothesis that a biometric
system built with a larger number of odours should perform
much better than a system trained with a lesser number of
odours.

In the next set of experiments, we wanted to explore if
there was a way of selecting a small set of odours instead of
selecting as many odours as possible without any performance
degradation of the biometric system. In other words, if there
is a small set of odours that more or less capture the global
odour profile of a person.

Very early work [36] showed that any odour can
be represented as a 4-component system, namely, a
weighted mix of fragrance, acidity, burntness, and
caprylicness. Every odour has a bit of each component,
enabling any odour to be represented by a four-digit number,
where the number indicates the intensity of the component
[37]. For example, freshly roasted coffee can be represented
as (7, 6, 8, 3) while hay can be represented as (5, 1, 1, 4). To
enable a plausible interpretation of the 4 components, odour
profiles of 144 aroma chemicals were extracted and compared
to numeric odour profiles through statistical regression [35].
This resulted in the visualization of the odour cube. Using
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Fig. 2. The selected odours marked on the Odour Cube [35].

an odour cube as a reference, we identified a set of 5-
odours, among the 13 odours available in ODOUR-DB. The
selected odours are such that they (rose, lemon, coffee,
excrement, mint) span the odour cube (see Fig. 2). Notice
that the odours rose, lemon, coffee, excrement are
closest to the odour components fragrance, acidity,
burntness, caprylicness respectively and we choose
mint to cover as much area in the total odour cube as
possible (see Fig. 2). We trained a biometric system using
EEGs from 5-odours (rose, excrement, mint, coffee,
lemon) to model the subjects, and used EEG samples from
the remaining 8 odours (3080 samples) for testing. Table IV
shows that, a carefully selected set of 5 odours that span the
odour cube, is able to model a subject very well. Notice that
the performance of this biometric system for all combinations
of feature sets and classifiers results in a performance in the
range of 97.5 to 100%. It can be observed that the performance
of Late fusion shows an absolute improvement of around 28%
as compared to the best performing (BioSPPy features; RF
classifier; 72.11%) randomly picked 5-odour biometric system
(Table III).

We further reduced the number of odours used to model the
subject to study the performance of the biometric system built
with a smaller number of odours. The performance accuracies
of 4, 3, 2, and 1 odours used to model the subject are captured
in Table IV. We mention only the accuracies for the best
odour combinations from the initially selected 5-odours. Note
that the performance of the biometric system, in terms of
accuracy, in Table IV is better compared to the performance
of the biometric model using 12 odours (see Table II). We can
observe that the performance accuracy drops by only 1% and
3% while using 4 (rose, excrement, coffee, lemon)
and 3 (rose, excrement, lemon) odours, respectively, as
compared to the system using 5-odour EEG data for training.
We can observe that the best performance of a 1-odour biomet-
ric system trained on the lemon at 63.38% when BioSPPy
features were used along with the RF classifier is much better

5-odour: rose, excrement, mint, coffee, lemon
PyEEG BioSPPy PyWavelets Early Late

SVM 98.18 98.80 98.67 98.90 99.35
RF 96.40 98.60 98.83 99.09 99.02

KNN 97.50 97.63 98.05 98.12 99.1
ANN 98.90 99.51 99.06 99.29 100

4-odour: rose, excrement, coffee, lemon
SVM 97.58 97.09 95.50 95.96 98.29

RF 94.72 96.39 97.98 98.10 97.95
KNN 96.80 95.87 95.84 96.25 97.66
ANN 97.46 97.92 95.64 96.62 98.90

3-odour: rose, excrement, lemon
SVM 93.14 89.90 90.13 92.54 92.73

RF 92.03 95.17 94.55 97.16 96.49
KNN 92.52 88.03 88.83 89.53 91.94
ANN 94.08 93.74 94.75 95.42 96.54

2-odour: excrement, lemon
SVM 88.97 86.66 85.88 89.32 90.90

RF 92.73 92.82 93.22 97.94 94.85
KNN 87.53 84.37 85.95 87.10 89.75
ANN 89.89 91.71 89.14 93.19 93.03

1-odour: lemon
SVM 54.85 52.23 52.86 54.35 52.98

RF 59.35 63.38 56.41 59.00 58.33
KNN 55.69 50.84 51.90 53.48 51.16
ANN 56.52 60.17 53.83 56.68 54.89

TABLE IV: Performance of 5,4,3,2,1-odour biometric systems.

than the best performance (57.84%) of 1-odour, randomly
selected, biometric systems captured in Table III. However,
the performance of 2-odour (excrement, lemon) biometric
system is better than the 3-odour system; this requires further
investigation. This set of experiments with a reduced number
of odours to build a biometric system clearly demonstrates
that a careful choice of odours, based on odour chemistry
literature, can help build a usable biometric system for subject
identification.

V. CONCLUSION

In this paper, we propose to use odour as a potential stimulus
for EEG brainwave-based biometric identification. We also
explore different sets of spectro-temporal features, intending
to capture subject-specific characteristics for modeling the
biometric system. The advantages of using odour over other
conventional stimuli are: (1) some artifacts that reduce ad-
ditional challenges of separating noise caused by the trigger
from the actual brainwaves can be avoided, (2) odours provoke
emotions related to strong memories attached to them, generate
not only strong but also natural brainwave response. Rigorous
experiments on a publicly-available dataset suggest that it is
possible to build an odour-independent biometric system with
very high-performance accuracy, using just 5 carefully chosen
odours based on odour chemistry. More importantly, an odour-
triggered EEG brainwave-based biometric system can be one
of the best alternatives for people having severe damage to
their physical structure because of accidents and cannot be
authenticated using face, iris, audio, or finger-print biometric
authentication systems.
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[15] André Zúquete, Bruno Quintela, and João Paulo da Silva Cunha,
“Biometric authentication using brain responses to visual stimuli.,” in
Biosignals, 2010, pp. 103–112.

[16] Sherif Nagib Abbas Seha and Dimitrios Hatzinakos, “Human recog-
nition using transient auditory evoked potentials: a preliminary study,”
IET Biometrics, vol. 7, no. 3, pp. 242–250, 2018.

[17] Ana Loboda, Alexandra Margineanu, Gabriela Rotariu, and Anca Mi-
haela Lazar, “Discrimination of EEG-based motor imagery tasks by
means of a simple phase information method,” International Journal of
Advanced Research in Artificial Intelligence, vol. 3, no. 10, 2014.

[18] Suolin Duan, Tingting Xu, Wei Zhuang, and Dan Mao, “The feature
extraction of ERD/ERS signals based on the wavelet package and ICA,”
in Proceeding of the 11th World Congress on Intelligent Control and
Automation. IEEE, 2014, pp. 5621–5625.

[19] Katharine Brigham and BVK Vijaya Kumar, “Subject identification from
electroencephalogram (EEG) signals during imagined speech,” in Fourth
IEEE International Conference on Biometrics: Theory, Applications and
Systems. IEEE, 2010, pp. 1–8.

[20] R.B. Paranjape, J. Mahovsky, L. Benedicenti, and Z. Koles’, “The
electroencephalogram as a biometric,” in Canadian Conference on
Electrical and Computer Engineering, 2001, vol. 2, pp. 1363–1366
vol.2.

[21] Muhammad Kamil Abdullah, Khazaimatol S Subari, Justin Leo Cheang
Loong, and Nurul Nadia Ahmad, “Analysis of effective channel place-
ment for an eeg-based biometric system,” in IEEE EMBS Conference
on Biomedical Engineering and Sciences, 2010, pp. 303–306.

[22] Jeremy Warden-Smith, Laboni Paul, Kasope Olukogbon, Emma S
Bointon, Richard H Cole, Sarah R John, Shan Dong, and Tim JC
Jacob, “Light and smell stimulus protocol reduced negative frontal EEG
asymmetry and improved mood,” Open Life Sciences, vol. 12, no. 1,
pp. 51–61, 2017.

[23] Michael S Xydakis and Leonardo Belluscio, “Detection of neurodegen-
erative disease using olfaction,” The Lancet Neurology, vol. 16, no. 6,
pp. 415–416, 2017.

[24] Noor Kamal Al-Qazzaz, Sawal Hamid Bin Ali, Siti Anom Ahmad,
Kalaivani Chellappan, Md Islam, and Javier Escudero, “Role of EEG
as biomarker in the early detection and classification of dementia,” The
Scientific World Journal, vol. 2014, 2014.

[25] Mark W Albers and DP Devanand tMD, “Olfactory dysfunction as
a predictor of neurodegenerative disease,” Current neurology and
neuroscience reports, vol. 6, no. 5, pp. 379, 2006.

[26] Meghna Pandharipande, Upasana Tiwari, Rupayan Chakraborty, and
Sunil Kumar Kopparapu, “Tempo-spectral EEG biomarkers for odour
identification,” in IEEE Engineering in Medicine & Biology Society,
EMBC, 2023.

[27] Ebru Yavuz and Önder Aydemir, “Olfaction recognition by EEG analysis
using wavelet transform features,” in 2016 International Symposium on
Innovations in Intelligent SysTems and Applications (INISTA). IEEE,
2016, pp. 1–4.

[28] Onder Aydemir, “Odor and subject identification using electroen-
cephalography reaction to olfactory,” Traitement du Signal, vol. 37,
no. 5, pp. 799–805, 2020.

[29] Forrest Sheng Bao, Xin Liu, Christina Zhang, et al., “PyEEG: an open
source python module for EEG/MEG feature extraction,” Computational
Intelligence and Neuroscience, vol. 2011, 2011.

[30] U Rajashekhar, D Neelappa, and L Rajesh, “Electroencephalogram
(EEG) signal classification for brain–computer interface using discrete
wavelet transform (DWT),” International Journal of Intelligent Un-
manned Systems, vol. 10, no. 1, pp. 86–97, 2022.

[31] Asghar Zarei and Babak Mohammadzadeh Asl, “Automatic seizure
detection using orthogonal matching pursuit, discrete wavelet transform,
and entropy based features of EEG signals,” Computers in Biology and
Medicine, vol. 131, pp. 104250, 2021.

[32] Qing-Hao Meng and Hui-Rang Hou, “Olfactory EEG datasets: EegDot
and EegDoc,” https://dx.doi.org/10.21227/59nx-6g46, 2022.

[33] Carlos Carreiras, AP Alves, A Lourenço, F Canento, H Silva, and
A Fred, “BioSPPy: Biosignal processing in python https://github.
com/pia-group,” BioSPPy/(Accessed: December 2018), 2015.

[34] Gregory Lee, Ralf Gommers, Filip Waselewski, Kai Wohlfahrt, and
Aaron O’Leary, “PyWavelets: A python package for wavelet analysis,”
Journal of Open Source Software, vol. 4, no. 36, pp. 1237, 2019.

[35] Manuel Zarzo, “A sensory 3D map of the odor description space derived
from a comparison of numeric odor profile databases,” Chemical Senses,
vol. 40, no. 5, pp. 305–313, 2015.

[36] Ernest C Crocker and LF Henderson, Analysis and classification of
odors: an effort to develop a workable method, Robbins Perfumer
Company, 1927.

[37] Ernest C Crocker and FN Dillon, “Odor directory,” Am Perf Essent Oil
Rev, vol. 53, pp. 297–301, 1949.

1144


