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Abstract—Different machine learning approaches for analyzing
renal hemodynamics using time series of arterial blood pressure
and renal blood flow rate measurements in conscious rats are
developed and compared. Particular emphasis is placed on
features used for machine learning. The test scenario involves
binary classification of Sprague-Dawley rats obtained from two
different suppliers, with the suppliers’ rat colonies having drifted
slightly apart in hemodynamic characteristics. Models used for
the classification include deep neural network (DNN), random
forest, support vector machine, multilayer perceptron. While
the DNN uses raw pressure/flow measurements as features, the
latter three use a feature vector of parameters of a nonlinear
dynamic system fitted to the pressure/flow data, thereby restrict-
ing the classification basis to the hemodynamics. Although the
performance in these cases is slightly reduced in comparison to
that of the DNN, they still show promise for machine learning
(ML) application. The pioneering contribution of this work is the
establishment that even with features limited to hemodynamics-
based information, the ML models can successfully achieve
classification with reasonably high accuracy.

Index Terms—machine learning, biomedical signal processing,
physiology, nephrology

I. INTRODUCTION

Renal hemodynamics concerns the flow of blood in the
vessels of the kidney. In normal circumstances, the kidney’s
vasculature responds to blood pressure (BP) variations in a
fashion such that renal blood flow (RBF) rate is maintained
relatively constant. This renal autoregulation (AR) relates both
to the kidney’s function of filtering the blood and also to
protection from injury caused by transmission of elevated
arterial BP to the sensitive filtering units [12], [20], [24]. The
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importance of renal AR has led to many investigations into its
physiology and characterization from hemodynamic measure-
ments. For instance, the efficiency of AR is considered a major
factor influencing the kidney’s susceptibility to hypertensive
injury [3], [6]. The capability to assess AR efficiency there-
fore has investigatory as well as clinical relevance. Indeed,
chronic kidney disease (CKD) affects 13.4% of the world’s
population [17].

In empirical studies of renal AR in rats and other animals, a
variety of techniques has been employed to infer information
about AR from BP and RBF measurements. The steady state
efficiency of renal AR is most commonly assessed via the
Autoregulatory Index (ARI). For the ARI, acute changes in BP
are effected using aortic clamps with the animal anesthetized,
and the average response in RBF is measured [4], [8], [12],
[20]. The response kinetics may also be investigated in such
experiments by estimating time constants of (approximately)
exponential time courses of the AR response [20].

Another approach to AR assessment utilizes BP and RBF
measurements taken either in the anesthetized or conscious
state to generate estimates of the empirical transfer function
between variational BP and variational RBF [4], [12], [20].
The transfer function estimates, including characteristics of
its frequency response, inform about the speed of the AR
response [1], [11], [26], the relative contribution of the various
mechanisms involved in AR [21], and changes in response
to interventions [4], [13]. Nonlinear dynamic models of renal
AR, an alternative to the empirical transfer function estimates,
obtain higher quality representation of the underlying dynam-
ics [10], [16], capturing some of the nonlinearity known to be
extent in renal AR [18].

More recently, calculations akin to the ARI employed
with acute BP changes effected under anesthesia have been
performed on recordings of BP and RBF obtained in the
conscious state using spontaneous fluctuations of BP [5].
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These Short Segment ARI (SSARI) values provide improved
assessment of AR efficiency when a sufficient number of
qualifying pressure change events enable averaging to smooth
the inherent variability in the SSARI.

These approaches have had varying degrees of success in
elucidating characteristics of AR under experimental con-
ditions. One aspect of the procedures in each case is the
determination of specifically conceived features of a dynamic
response or description calculated from the hemodynamic time
series of BP and RBF. The ARI from step changes in BP,
average SSARI values, or values and locations of resonance
peaks in the empirical frequency response are examples of this.
This present work represents a foray into a different approach,
that of machine learning. Rather than defining specific char-
acteristics within the measured data, we let machine learning
models draw out the relevant information embedded in the
data features presented to them, thereby avoiding any prejudice
regarding what aspects are important. We do this in two ways.
One approach is the training of a deep neural network (DNN)
for which the features presented to it are the raw BP/RBF data
record. We first pursued this via a DNN used to assess AR
efficiency as intact or impaired [2]. The second approach is to
generate a data-determined dynamic input-output model from
the variational BP/RBF data and then use the model parameter
values as features for the machine learning models. We use
the Volterra-FPET model approach of [15], [16] as the best
available dynamic representation of the BP/RBF relationship.

With respect to [2], one challenge for network training was
that the available data did not allow for clearly labeled training
sets. There, groupings of rats were understood to have intact
or impaired AR efficiency, dependent on interventions (or the
lack thereof) known to affect adversely the function of AR.
However, the actual AR efficiency of any single data set was
unknown, and hence no data could be definitively labeled as
having intact AR or impaired AR. To investigate the efficacy
of machine learning to extract information from BP and RBF
recordings, we here consider a classification problem in which
we do have clearly labeled data.

The Sprague-Dawley (SD) strain of rats has seen much use
in the study of renal AR. Investigators have observed that SD
rats from two different suppliers, Charles River (CR) and Har-
lan (Har), present differences in their renal vascular behavior,
likely due to effects within the nitric oxide (NO) pathway
stemming from genetic drift or possibly contamination within
one supplier’s colony [7], [14], [27]. The renal hemodynamics
remain otherwise quite similar among all rats of the SD
strain. Here we investigate the capability of machine learning
models to classify these rats to supplier based on their BP/RBF
recordings. Our presumption was that differences connected to
NO, a vasodilator, would manifest in the hemodynamic record.

Our approaches using either raw BP/RBF data or the
dynamic model parameters as the basic features presented
to machine learning models manifest in the following ways.
First, a DNN with convolutional and fully connected layers is
deployed using raw pressure and flow rate measurements as its
features. The DNN performance is compared to that of three

other machine learning models: a random forest, a support
vector machine, and a multilayer perceptron. Each of these
latter three models is presented with a feature vector consisting
of parameters from a nonlinear dynamic system fitted to the
pressure and flow data. The nature of the feature vector in
these cases restricts the classification basis to the dynamic
relationship between the pressure and flow, unlike for the
DNN. We achieved reasonable classification accuracy by using
only the hemodynamic-related features compared to using
unrestricted raw information. This pioneering work establishes
that ML algorithms can successfully use these dynamics-based
features, enabling us to make progress in quantifying CKD
based on renal hemodynamic features using ML techniques.

II. DATA AND FEATURE SELECTION

Over the past several decades, the laboratories of several
of the authors have produced numerous BP/RBF recordings
in SD rats instrumented for chronic monitoring of BP and
RBF. These recordings were obtained in support of a variety of
experiments over that time, creating a database useful for our
machine learning investigations. All animals were cared for in
accordance with the Guide for the Care and Use of Laboratory
Animals and the protocols approved by the Hines Veterans
Affairs Institutional Animal Care and Use Committee. BP time
series were acquired from a sensor surgically inserted into
the aorta, below the renal artery, with readings communicated
via a radiotransmitter as previously described [4], [13]. RBF
time series were acquired using an ultrasonic transit time flow
probe fitted around the renal artery with the probe cable affixed
to the back muscles and exiting the animal at the neck as
previously described [4], [13]. A recovery period following
the instrumentation surgery precedes data acquisition.

Simultaneous measurement of BP and RBF is done over
periods between one and two hours in duration. The data are
sampled at 200 Hz, which is adequately fast to avoid aliasing
of frequency content in the signals. We have available for
each individual rat from one to four such BP/RBF recordings.
Within each recording we select 30 minutes of good quality
data. The criterion used for assessing data quality is based
on an empirical linear transfer function model, developed as
described in [13], that relates variational BP to variational
RBF. To select the best 30 minute section, we maximize co-
herence in a frequency range important for the AR dynamics,
as described in [2].

The specific data we use in this work come from 230 SD rats
from the CR supplier and 87 SD rats from the Har supplier. We
partition the rats in each of the two groups into those used for
network training (68%), those for validation (7%), and those
for testing (25%).

To prepare the data for presentation to the DNN, each 30
minute segment obtained as described above is separated into
one minute long snippets of BP and RBF data. Depending
on the number of recordings for each rat, we have between
30 and 120 snippets per animal. To diversify the data used
for training, the starting sample time for the sequence of
snippets is randomized within the first minute of the 30
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minute segment. After random selection of this start point, 29
snippets are available for use from that 30 minute segment.
Periodically during training, this starting point is randomized
again. For test data, we simply used the 30 one minute snippets
that occur end to end within the full 30 minute segment.
Prior to its input to the network, we normalize the mean
and variance of each one minute snippet to zero and one,
respectively. These normalizations are performed to prevent
classification on the basis of baseline values of BP or RBF
and their underlying variability levels. The normalization will
not affect the network’s capacity to classify based on relative
value changes or the AR dynamics.

For the other machine learning models, the Volterra-FPET
modeling approach of [16] was used to generate feature
vectors of 456 parameters of models fit to each of the 30
minute data records. This dynamic model produces an estimate
of variational RBF as model output, with variational BP
as input. The Volterra-FPET provides the best modeling fit
amongst all models that have been deployed for this purpose.
However, it has seen less use because the model obtained
is difficult to interpret. Here, we effectively let the machine
learning models do that interpretation. The generated dynamic
models use the BP/RBF data resampled to a 2 Hz sampling
rate (following appropriate lowpass filtering). In the Volterra-
FPET, one selects fixed pole locations that define linear basis
systems, appropriate for the modeling situation, with the model
output a linear combination of polynomials formed from the
basis system outputs. A good choice of fixed poles reduces
the overall model complexity, which in this application makes
nonlinear AR modeling tractable. We used a complex pole
pair at z = 07489 £ 50.4614 with multiplicity two and a real
pole at z = 0.9139 with multiplicity eight for a total of 12
poles in the Volterra-FPET. These values represent averages
of the values reported in [16], and though not optimized in
this setting provide reasonable results when predicting RBF
values using the model.

III. MACHINE LEARNING MODELS

We designed the DNN and different machine learning
approaches including random forest (RF), support vector ma-
chine (SVM), multilayer perceptron (MLP) to classify SD rats
based on their two suppliers (CR or Har). These ML ap-
proaches were chosen for this work as they are commonly used
for renal pathology applications [31]. The models presented
were selected after testing with various hyper-parameters. For
each ML model, the hyper-parameter tuning is performed
using 5-fold cross-validation that combines both training and
validation datasets. The optimal values for hyperparameters
are selected by performing grid search over the hyperparam-
eter space to strike a balance between model accuracy and
overfitting [32].

The DNN structure with three convolutional layers, fol-
lowed by two fully connected layers is used which is similar
to the DNN architectures that have been successfully applied
in applications similar to ours [9], [19], [22], [25], [28]-
[30]. The input of one-minute-long snippets of BP and RBF

data sampled at 200 Hz is presented to first convolutional
layer with 16 kernels of length 3 seconds (600 samples).
These filters move with a stride of one sample each and
operate on the BP and RBF data to learn characteristics of
temporal relationship between the two. We follow this with
a max pooling layer of shape 10 x 1 that moves with a
stride of 2. The second convolutional layer with 24 kernels
of shorter length (400 samples), moving with stride of one
sample is followed by a max pooling layer of shape 8 x 1
and stride of 2. The third convolutional layer has 32 kernels
of length 100 samples, followed again by max pooling (8
x 1, stride of 2). This layer’s output is flattened and fed as
input to the first of two fully connected layers. The first fully
connected layer has 256 neurons, and the second has 128.
All convolutional and fully connected layers use a Rectified
Linear Unit (Relu) as the activation function. The second
fully connected layer’s output feeds the output layer, which
employs a sigmoid activation function with output between
0 (corresponding to CR) and 1 (corresponding to Har). The
network architecture for DNN is finalized after extensive
variation of different network parameters including number
and type of layers, size of input data, number and length
of kernels in the convolutional layer and size of the fully
connected layers.

The ensemble algorithm of RF model integrating several
independent decision trees is used classify the SD rats into
the two supplier groups. The 456 feature vectors computed
for the 30-minute-long BP and RBF data records generated
from Volterra-FPET model discussed in Section 2 are fed to
the RF model as input. For RF model, we used 125 decision
trees with maximum depth of 6 for each tree. To measure the
quality of a split, the entropy criterion is used. The minimum
number of samples required to split an internal node and to
be at a leaf node are selected as 0.2 and 0.08 of total samples
respectively. The output of random forest classifier is obtained
by choosing the most popular class amongst the individual
decision trees.

Similar to the RF classifier input, the feature vectors ob-
tained as a characterization of Volterra-FPET model are fed to
an SVM model to classify the SD rats. SVM is modeled by
selecting radial basis function (rbf) as a kernel function. The
kernel coefficient for rbf function is selected by considering
the input variance and the number of features. Training was
sensitive to adjustments of the regularization parameter. We
set its value carefully to avoid overfitting.

MLP architecture is analogous to the fully connected layer
structure of the DNN model. The features generated from
Volterra-FPET model are used as input to the MLP while in
case of DNN, convolution layers generate the features from
BP and RBF data that are fed to fully connected layers.
The first fully connected layer has 256 units, and the second
layer has 128 units, similar to the corresponding portions
of the DNN network. In both the layers, Relu is used as
the activation function and an Adam solver [23] is used for
weight optimization. The batch size of 16 with 0.01 strength
of regularization term is selected to train the MLP model. It

1147



minimizes the cross-entropy loss function and gives a vector
of probability estimates per input record. Refinements and
improvements of these classification models are expected to
be possible.

IV. TRAINING AND TESTING

We trained the classifier models to distinguish between CR
and Har using 156 CR and 59 Har rats. Each rat used for
training has one or more 30-minute BP and RBF recordings,
all split into successive one-minute snippets for the DNN
input. To help diversify training data we randomize the first
snippet’s starting point as noted in Section 2. All snippets are
normalized to zero mean and unit variance. An additional 16
CR and 6 Har rats are used for validation. We trained the
DNN network through multiple epochs to score from 0 (CR)
to 1 (Har). As the loss plateaus during training, we reduce
the learning rate by four. We used an Adam optimizer [26]
to reduce the binary cross entropy loss between the predicted
and true classes.

To evaluate the DNN performance after training, we used
data from 58 CR and 22 Har rats. Recordings for each rat
are broken into a maximum number of one-minute long data
snippets. Each snippet is presented to the network, resulting
in an output score in the range from O to 1. We average the
scores for all snippets from a given rat to produce a single
score value for that rat. The rat animal gets classified into
either CR or Har class depending on the obtained score value.

To train the other ML models, the same training set of 156
CR and 59 Har rats is used. The 456 feature vectors computed
for each 30-minute data records generated from Volterra-FPET
model is used as input. For a purpose of balancing the training
dataset, we divided the CR records into 3 separate bins and
kept the Har records same across all bins and trained 3 separate
models for each approach considering these bins with same
sets of hyperparameters.

For performance evaluation, we used the same 58 CR and 22
Har rats utilized during DNN evaluation. We obtain an output
score corresponding to each 30-minute data record, and we
classify the record based on this output score.

All these models are trained with five different sets of
data partitions for training and testing. This approach helps
to achieve a better generalized model performance.

V. CLASSIFICATION RESULTS

The results from the various classification models are pre-
sented in terms of accuracy metrics. For a nominal classi-
fication threshold of 0.5, we achieved the test accuracy for
DNN, RF, SVM, and MLP as 0.902 + 0.035, 0.828 + 0.034,
0.757 £0.036, and 0.792 £ 0.038 respectively considering all
the five data partitions.

Figure 1 shows the receiver operating characteristic (ROC)
curves for the best performing classifier models of each type
of machine learning model, when presented with the CR and
Har test data. We find that the DNN performs the best, while
the RF, SVM, and MLP approaches have similar results to
each other that are only slightly below the performance of

TABLE I
AUC OF DIFFERENT CLASSIFIERS

Model Comparison
DNN | RF | SVM
098 | 092 | 091

MLP
0.92

AUC

the DNN. The area under the ROC curve (AUC) is shown in
Table 1. These results give confidence that we can reasonably
classify the SD rats into CR and Har classes using these
methodologies.
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Fig. 1. ROC of different models for test data from CR and Har rats.

VI. DISCUSSION AND CONCLUSION

In this study we have demonstrated the capability of ma-
chine learning models to distinguish between the CR and Har
strains of the SD rat on the basis of BP/RBF measurements.
To our knowledge, this is the first study to use dynamics of
renal BP and RBF data for animal strain classification, with
no previous published work or golden standard to compare
against. The accomplishment is not too surprising, given the
capabilities of machine learning for such tasks and given that
these two strains, though close in most ways, are known to
differ in their hemodynamics. Importantly, this capacity to
distinguish between the strains is retained when the machine
learning models are presented only with the dynamic model
relating BP to RBF. Because our interest is to assess the AR
capacity, we want to balance between flexibility in the machine
learning models with restriction to features that relate to AR.

The DNN models perform best in the classification task.
However, information in the BP/RBF record may separate
CR from Har for reasons other than AR. The other machine
learning models are constrained to act only on the basis
of the AR dynamics through the feature vector defined by
the nonlinear dynamic model parameters. The fact that the
classification performance of these models is lower than that
of the DNN suggests the possibility that the DNN was indeed
using something other than AR to separate the two strains.
One should also keep in mind that the BP/RBF data presented

1148



to the DNN was acquired at a 200 Hz sampling rate, which
enables utilization of characteristics such as the pulse shape
in the BP or RBF record, for instance. Other possibilities are
that the AR dynamics only partially separates the two strains,
or that the FPET dynamic model captures only imperfectly the
AR dynamics.

Nonetheless, we are encouraged that the Volterra-FPET
modeling approach of [16] generates a feature vector that
provides a basis for effective machine learning analysis of
renal AR. We can potentially improve the performance of this
approach by further optimizing the selection of the fixed pole
locations in the Volterra-FPET, either for groups of records
or for individual records. In the latter case the pole locations
would become additional features for the machine learning
model.
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