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Abstract—Assessments of fetal heart rate tracings by obstetri-
cians suffer from inter- and intra-observer variability whereas
computerized fetal heart rate analysis lacks consensus on labels
that have diagnostic capability. There are different measurements
that carry important information about fetal well-being, although
in the literature the most adopted one has been the umbilical
cord blood pH value at birth. In this paper, instead of relying
on pH-based labeling only, we propose Gaussian process-based
multi-task learning that is able to learn multiple fetal well-being
measurements simultaneously by explicitly modeling similarity
between the tasks. We tested the proposed approach with differ-
ent intrapartum databases on both regression and classification
tasks. Our experimental results show that the proposed approach
achieves superior performance compared to popular single-task
learning models for fetal heart rate analysis.

Index Terms—multi-task learning, fetal heart rate, Gaussian
processes, Bayesian nonparametric methods, transfer learning

I. INTRODUCTION

Electronic fetal monitoring is the most widely accepted
method for intrapartum monitoring since it allows continuous
fetal surveillance during labor to prevent adverse outcomes due
to fetal hypoxia and ischemia. It is usually performed using
cardiotocography (CTG), which is a simultaneous recording of
the fetal heart rate (FHR) and uterine activity (UA). Although
great effort has been made to establish various clinical guide-
lines for CTG interpretation and classification [1], there are
high inter- and intra-variabilities in the obstetrician’s visual
interpretations of the signal patterns [2]. In computerized
FHR analysis, which aims at supporting and improving CTG
interpretations, FHR recordings are usually labeled by pH
values of umbilical cord blood at birth [3]. The prevalence of
umbilical cord blood pH-based labeling notwithstanding, there
has been considerable controversy surrounding the reliability
of pH and its threshold for classification of healthy and
pathological delivery outcomes [4]. On the other hand, well-
adopted clinical metrics/labels such as newborn Apgar scores
and cord blood gas-based surrogates other than pH have rarely
been used in computerized FHR analysis.

Multi-task learning (MTL) aims at learning multiple related
tasks simultaneously by leveraging the shared information
across tasks. Different from single-task learning (STL), which
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learns the tasks in an isolated manner, MTL uses data across
different tasks to learn shared representations that are useful to
improve performance on all the tasks. MTL has been applied
to many biomedical and healthcare applications, for example,
seizure electroencephalogram (EEG) signals recognition [5]
and patient healthcare data analysis [6]. Besides, great research
efforts have been devoted to adopting various frameworks for
MTL. Recently, Gaussian processes (GPs) have been adopted
for MTL since they provide a powerful and flexible framework
for modeling unknown functions [7]–[9]. More importantly,
unlike neural network-based and deep learning models, which
require massive data to learn a large number of parameters,
GPs are a nonparametric Bayesian data-efficient methodology
because it allows for expressing the prior belief about the
unknown functions.

In this work, we introduce the concept of MTL to FHR
analysis for the first time and demonstrate its effectiveness
using a GP-based MTL model. We tested it in regression
and classification tasks using a widely-used open-access in-
trapartum CTG database and a new in-house CTG database,
respectively. The experimental results show that GP-based
MTL models outperformed the single-task learning GPs and
other benchmark models in both regression and classification
tasks. This indicates that for FHR analysis, MTL models can
achieve better performance than STL models.

II. BACKGROUND

A. Computerized Fetal Heart Rate Analysis
The ultimate goal of computerized FHR analysis is to

estimate fetal wellbeings from acquired intrapartum signals
as well as other available clinical data. In practice, the fetal
wellbeing is measured or characterized by different fetal out-
comes and metrics. Therefore, estimating or predicting these
fetal outcomes and metrics are of great importance. Various
computerized FHR analysis and evaluation approaches have
been proposed in the literature. For example, a sparse support
vector machine (sparse SVM) was adopted in [10] for the
selection of informative features and FHR classification for
fetal acidosis detection. In [11], the authors proposed a deep
GP framework to provide informative latent space that can be
used to generate FHR signals and improve the performance
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of FHR classification. In [12], 8 machine learning models,
including SVM and random forest, were implemented and
evaluated for classification of CTG recordings.

However, most of the studies in FHR analysis learn only one
task, which is to classify CTG recordings usually labeled by
the umbilical cord blood pH value of the fetus at birth. Despite
the wide use of such labeling approach, there is no consensus
on the validity of adopting pH value for labeling as well as the
cut-off value that should be used for diagnosis [4]. On the other
hand, it has been shown that other fetal outcome measures
are also able to provide valuable information on identifying
adverse outcomes [13], [14]. Although some studies combined
multiple fetal outcome measures, such as pH value and base
deficit, to define abnormality for labeling [15], the models
can only learn from the information based on the fetus classes
that these surrogates define jointly. These studies, however, are
still of STL nature. By contrast, within the MTL framework,
different measurements can be accommodated directly. MTL
models are able to learn both from the information based on
the fetus classes that are defined by a specific label and from
the underlying information shared by the classes.

B. Multi-task Learning
MTL is related to many active fields of research in machine

learning, including transfer learning and multi-modal learning.
Both MTL and transfer learning allow knowledge transfer
across different tasks. However, transfer learning aims to
enhance the performance of a target task using information
learned from a source task while the objective of MTL is
to improve the performance on all tasks. Furthermore, both
multi-task and multi-modal learning improve generalization
of models, while multi-modal learning solves tasks across
multiple domains, where each domain has different types of
data inputs, for example video, text and audio [16].

In the literature, there are three categories of MTL ap-
proaches, and they are based on the strategy of modeling the
relatedness of the tasks. The first category is feature-based
where one assumes that all related tasks share some feature
representations. The second category is parameter-based where
the task similarities are encoded by placing prior or constraints
on model parameters. The last category is instance-based
where models identify the instances in one task that will help
learning other tasks. The GP-based MTL model belongs to
the second category as it additionally introduces a similarity
matrix to explicitly model the relatedness between tasks. In
[17], MTL GP was formulated from a perspective of the
relationship between linear models and GPs. Further, a sparse
approximation for inference of GP-based multi-task approach
was proposed in [18]. Recently, the authors in [19] introduced
a continual learning method to model sequential observations.

In this work, we adopted GP-based MTL for computerized
FHR analysis for the following reasons. Firstly, GP is a power-
ful Bayesian machinery that is inherently connected with many
machine learning models, e.g., SVMs and neural networks.
More importantly, data scarcity is one of the major challenges
in computerized FHR analysis, for instance, the largest open-

access intrapartum CTG database contains only 552 labeled
CTG recordings. The Bayesian nature of the GPs enables
them for data-efficient learning, which makes them suitable for
computerized FHR analysis. Finally, another merit of the GPs
is their capability for accurate quantification of uncertainties
within a probabilistic framework. In turn, this is of great
importance for decision making and risk quantification.

III. MODEL DESCRIPTION AND INFERENCE

A. Gaussian Processes
A GP is a collection of random variables such that every

finite subset of them has a multivariate normal distribution. If
x denotes an input, a GP can be seen as a distribution of a
real-valued function fpxq, and it is fully specified by its mean
function mpxq “ Erfpxqs and covariance function kpx,x1q “
E rpfpxq ´ mpxqqpfpx1q ´ mpx1qqs. For simplicity, the mean
is usually assumed to be zero.

The core of a GP is the covariance function kpx,x1q because
it maps similarities or dependencies between inputs, e.g., x and
x1 to the covariance between outputs fpxq and fpx1q. One of
the most commonly used covariance function is the squared
exponential,

kpx,x1q “ �2 exp

ˆ
´||x ´ x1||2

2`

˙
, (1)

where �2 and ` ° 0 are its hyperparameters that are learned
from training data by maximizing the log-likelihood.

B. Gaussian Process-based Multi-task Learning
When there are multiple different but related tasks that we

want to learn simultaneously, multi-task learning is usually
adopted as information learned from each task can be shared
across all tasks to improve the model performance. And this
can be viewed as modeling multiple related functions simul-
taneously. Compared to GP-based STL, where the covariance
of outputs is mapped by the covariance function given the
similarity between inputs, the GP-based MTL approach addi-
tionally introduces an inter-task similarity matrix that models
the covariances between different latent functions belonging
to different tasks.

Given inputs X “ txnuNn“1, the complete set of correspond-
ing labels for M tasks can be defined as Y P RNˆM , where
Ynm is the entry of the nth row and mth column of Y, which
represents the label of the mth task for the nth input xn. Let
y be the vectorization of Y and yo Ä y be a set of observed
labels. We place a zero-mean GP prior over the latent functions
tfmuMm“1. Then the covariance between outputs of the mth
task and the m1th task can be modeled as

xfmpxq, fm1 px1qy “ Kf
mm1kxpx,x1q, (2)

where Kf
mm1 is the pm,m1qth entry of a positive semi-definite

matrix Kf P RMˆM that describes the inter-task dependencies
and kx is the covariance function over the inputs.

For regression tasks, we assume that the observed output of
the mth task on the nth input xn is a function of xn and

Ynm “ fmpxnq ` ✏m, (3)
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where ✏m „ N p0,�2
mq is additive Gaussian noise of the mth

task. Given a set of labels y, one can show that the likelihood
of ✓, where ✓ is the set of parameters of kx and the inter-task
dependencies matrix Kf , is given by

y|X,✓ „ N
`
0,Kf b kxpX,Xq ` D b I

˘
, (4)

where b is the Kronecker product, D P RMˆM is a diagonal
matrix whose pm,mqth entry is �2

m, and I P RNˆN is the
identity matrix. Therefore, the parameters of kx and Kf can
be learned by maximizing the marginal likelihood in (4).

To make predictions for a new input x˚ for the mth
tasks, one can use the fact that the predictive distribution
ppy˚|y,x˚,Xq is also Gaussian with mean

µ˚ “ cT⌃´1y, (5)

and variance

�˚ “ kxpx˚,x˚q ´ cT⌃´1c, (6)

where c “ kf
¨m b kxpx˚,Xq, kf

¨m is the mth column of Kf ,
and ⌃ “ Kf b kxpX,Xq `Db I. More details are available
in [7], [8].

For classification tasks, the likelihood is

⇡mpxq “ �pfmpxqq, (7)

where �pzq “ p1`expp´zqq´1. Unlike in the regression case
where the posterior of the latent functions and likelihood can
be computed analytically, in classification, due to the non-
Gaussianity introduced by the nonlinear mapping �, expecta-
tion propagation (EP) is often used for inference.

IV. EXPERIMENTS AND RESULTS

To demonstrate the usefulness of MTL in FHR analysis, we
tested the GP-based MTL approach in regression and classifi-
cation tasks using the CTU-UHB CTG database [20] and the
Stony Brook University (SBU) CTG database, respectively.
As mentioned previously, the CTU-UHB CTG database has
only 552 CTG recordings, and due to its relatively small size,
implementing deep learning-based approaches as benchmarks
is impractical. These approaches often require large number
of data points for training due to their number of parameters.
Instead, we implemented an STL (regular) GP model and
widely used baseline models in the literature of computerized
FHR analysis as our benchmark models.

In our experiments, we adopted 15 well-accepted FHR
features [11]. The features can be divided into three categories:
time domain, frequency domain, and nonlinear features. Time
domain features include the mean and standard deviation
of the FHR signals, short-term variability (STV), long-term
variability (LTV), short-term irregularity (STI), and long-term
irregularity (LTI) [21]. Frequency domain features consist of
the energies in four frequency bands: very low frequency
(VLF: 0–0.03 Hz), low frequency (LF: 0.03–0.15 Hz), mild
frequency (MF: 0.15–0.5 Hz), and high frequency (HF: 0.5–1
Hz), as well as the LF/(MF + HF) ratio [22]. Nonlinear
features include approximate entropy (ApEn), sample entropy

Category Features

Time Domain Mean, Standard deviation,
STV, LTV, STI, LTI

Frequency Domain VLF, LF, MF, HF, ratio
Nonlinear ApEn, SampEn, SD1, SD2

TABLE I: Table of all features.

(SampEn), and two measures of the Poincaré plot, SD1 and
SD2 [23]. The complete list of features is shown in Table I.

In our experiments, we used the squared exponential co-
variance function kx with variance equal to one to reduce the
number of parameters for estimation. Additionally, to increase
the model expressiveness, we assigned a lengthscale ` for each
input dimension in kx, which is known as automatic relevance
determination (ARD) [24].

A. CTU-UHB CTG Database
We first implemented MTL regression of six fetal outcome

measures, including umbilical cord blood pH values, pCO2,
base excess, base deficit, and the Apgar score at 1 minute and
at 5 minute [20]. In this work, we included FHR recordings
that had at least 60 minutes in length and had no missing
fetal outcome measures. In total, there were 350 suitable FHR
recordings with corresponding outcome measures.

In computerized FHR analysis, FHR recordings are usually
labeled by umbilical arterial pH when detecting neonatal
acidosis. However, there is no consensus on the validity of
using pH as an indicator for labeling [25], while other blood
gas-based measures and Apgar scores have also been shown
to have valuable information regarding the status of the infant
at birth [13], [14]. Therefore, in addition to the pH values, we
also included other cord blood gas results, i.e., pCO2, base
excess, and base deficit as well as the Apgar score at 1 minute
and at 5 minute after delivery, and the goal was to predict these
fetal outcome measures jointly.

First, we extracted the previously mentioned features from
the last 60 minutes of FHR signals. Since the above labels,
i.e., target variables are continuous, we implemented the GP-
based multi-task regression. We also implemented the regular
GP regression, linear regression, and regression tree for bench-
mark purposes. As a performance metric, we used the mean
absolute error (MAE), which measures the difference between
the actual and predicted values. We performed 5-fold cross-
validation (CV) and the experiments were repeated 10 times.
The results were averaged over the 10 runs, and they are shown
in Fig. 1. It can be seen that the GP-based multi-task approach
outperformed the STL-GP and the other benchmark models.

B. SBU CTG Database
We also implemented MTL classification of four binary

neonatal indicators on a new in-house CTG database. This
database consists of 5429 intrapartum CTG recordings and
corresponding clinical data. The data were acquired between
January 2018 and December 2020 at Stony Brook Gynecology
and Obstetrics of the University Hospital of SBU. The data
used in this work were a subset of the database. More
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Fig. 1: Performance of GP-based multi-task learning approach (MTL-GP), GP regression (STL-GP), linear regression, and
regression tree models. The tasks are regression of six fetal outcome measures, including umbilical cord blood pH values at
birth, pCO2, base excess, base deficit and the Apgar score at 1 minute and at 5 minute, as shown in title of each plot.

specifically, we selected to work with 365 recordings with
a missing data of less than 5% with a length of 60 minutes
before delivery.

One main attraction of this database is the availability of
information on multiple neonatal conditions, specifically, if
the newborn 1) is diagnosed as having respiratory distress; 2)
is diagnosed as having ischemia; 3) is diagnosed as having
delayed transition; and 4) is admitted to the neonatal intensive
care unit (NICU). In our experiments, we used these conditions
as labels for detecting neonatal acidosis as they are more
practical and can be used as alternatives to pH, since a
newborn with a low pH does not necessarily mean that any
pathological conditions will be developed in the future. As
the above labels are all binary, we cast it as a multi-task
classification problem where the goal is to predict if a newborn
has a specific neonatal condition.

We implemented the GP-based multi-task classification
and additionally included a GP classification model, logistic
regression, and random forest as benchmark models. The
performance was measured by the area under the receiver
operating characteristic curve (AUC-ROC) which measures the
diagnostic ability of a classification model as its discrimination
threshold is varied. Similarly to the regression experiment
in Section IV-A, we implemented a 5-fold CV and the ex-
periments were repeated 10 times. The experimental results
obtained by averaging over 10 runs are shown in Fig. 2. The
results show that the GP-based multi-task approach outper-
formed the regular GP and the other benchmark classification
models as it achieved the highest AUC-ROC in all tasks. This
indicates that better diagnostic ability can be achieved by using
MTL.

V. CONCLUSIONS

In the paper, we cast FHR analysis tasks into a GP-
based MTL framework that enables modeling of multiple fetal
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Fig. 2: Performance of GP-based multi-task learning classifica-
tion model (MTL-GPC), GP classification (STL-GP), logistic
regression, and random forest. The tasks are classification of
four binary neonatal indicators, as shown on the x-axis.

outcome measures and neonatal conditions simultaneously.
Despite their usefulness in practice, these measurements are
rarely exploited in computerized FHR analysis. We then
demonstrated the effectiveness of the proposed approach with
two different databases on various regression and classification
tasks. Our results show that the GP-based MTL model can
achieve better performance than benchmark STL models in all
the tasks of FHR analysis. The GP-based MTL approach can
readily be applied in the analysis of other biomedical domains
where data are limited and multiple diagnoses are desired.
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[10] Jiřı́ Spilka, Jordan Frecon, Roberto Leonarduzzi, Nelly Pustelnik, Patrice
Abry, and Muriel Doret, “Sparse support vector machine for intrapartum
fetal heart rate classification,” IEEE Journal of Biomedical and Health
Informatics, vol. 21, no. 3, pp. 664–671, 2016.

[11] Guanchao Feng, J Gerald Quirk, and Petar M Djurić, “Supervised and
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