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Abstract—Ovarian cancer (OC) is a deadly disease that affects
a large number of women worldwide. Machine Learning (ML)
models can help in the early detection of this disease, however, the
use of these models may be limited by their lack of interpretability
and the difficulty to evaluate their performance. In this work, five
types of datasets were used, employing clinical features, different
types of coding genomic features, and combining both. The use
of interpretable ML (IML) models (one linear and one nonlinear
model) provided us with better interpretability of the five feature
sets. Following this study, nine binary classification models were
compared, and the Accuracy, Recall, and Area Under the Curve
were analyzed. The results showed that ML models employed the
combination of clinical features and genomes with the coding
of the position of genes in patients significantly improves the
prediction. We demonstrated that the inclusion of different
preprocessed patient data and especially through the information
provided by IML models, can help clinicians to understand the
disease better and make informed treatment decisions.

Index Terms—Interpretable Machine Learning, Genetic Data,
Ovarian Cancer, Classification, Healthcare, Manifold Learning

I. INTRODUCTION

Ovarian cancer (OC) represents one of the most serious
types of cancer in our society, with an incidence of about
225,000 women in the world, considered as the gynecological
tumor with the worst survival prognosis (140,000 exitus per
year) [1]. One of the main problems of OC is the difficult
detection in the early stages, however, the advent of Machine
Learning (ML) is expected to provide improvement and ac-
curacy in diagnosis. The main applications of ML in OC
have been mainly using medical images, such as ultrasound,
computed tomography, or magnetic resonance imaging. One of
the studies using 2D imaging based on clinical data obtained
an accuracy of 78 % in predicting survival in advanced OC [2].
Currently, data science is used in the field of OC research in an
applied way, such as in pathology diagnosis and determination
of the response to treatment and malignant properties of OC
tumors under study. However, one of the main barriers today

is data collection, and generally, most studies focus mainly
on transcriptomic and proteomic profiling. Neural networks
have also been used for identifying a subset of proteins and
catabolic pathways with clinical features in the diagnosis [3].

In healthcare and other sectors, datasets contain a series
of characteristics (variables) of different types such as metric
variables, categorical variables, factual variables, and text.
However, many types of datasets use the same type of data and
require time-consuming preprocessing. For example, in this
work there are in the dataset the collection of the genomes of
each patient where relevant information appears, as the field
of the position that occupies that genome in the patient. The
treatment and time spent in the preprocessing of the data can
result in a considerable improvement of the classification and
regression models because the model must sometimes have
the information collected in a way that maximizes the greatest
linear combination of the relationships between the variables.

In this work, the first contribution is the proposal of different
possibilities of oncological data processing where different
possibilities of dataset of clinical data are proposed. In ad-
dition, we propose different types of genomic data coding
and the combination of clinical and genomic features. The
first study is framed in the study of the use of algorithms
based on Interpretable ML (IML) to visualize the samples of
the patients through their projection of low-dimensional latent
spaces, and the behavior of each of the cases and the class
latent distribution to subsequently improve their prediction. In
the last part, a set of supervised ML models are proposed
in order to evaluate and study the performance of each of
the models according to the metrics that evaluate the binary
classification. Therefore, our objective is to define a binary
classification model that obtains better performance based on
a set of metrics based on hyperparameter adjustment and data
preprocessing, by combining the data and coding the genomic
features of the patients.
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II. MATERIAL AND METHODS

A. Manifolds Learning Models
The two Manifold Learning models used to study the

latent spaces of the projections are the (linear model of)
principal component analysis (PCA) and the (nonlinear model
of) Uniform Manifold Approximation and Projection (UMAP).
PCA is a dimensionality reduction method that aims to project
a set of samples into a lower dimensional latent space, in
this particular work, into a three-dimensional latent space,
while preserving as many key features of the entire data set as
possible. The mathematical formulation of PCA is based on
given a dataset X , where there is a number of observations
k and with p variables, the covariance matrix S given X
(S = cov(X)) is

S =
XTX

k − 1
, (1)

The eigenvectors of this matrix are obtained by solving

Sv = λv, (2)

where v is an eigenvector and λ is the eigenvalue associated
with that eigenvector. The projection of the observations X
on the latent space given by the subspace of the n principal
components (in this case n = 3) can be expressed as follows

XL = XW, (3)

where W is the matrix of the n selected eigenvectors, and each
column corresponds to an eigenvector (ordered from higher to
lower eigenvalue) [4].

The second Manifold Learning model is UMAP, a dimen-
sionality reduction method, but in this case representing a
nonlinear mapping where the objective is to maintain the local
structure of the input data samples in a low-dimensional latent
space. Given the dataset X , the method builds a neighborhood
graph, where each observation is connected to its nearest
neighbors according to a measure of distance between data
samples. Then, an optimization algorithm calculates the low-
dimensional projected vectors, grouped in matrix Y , based on
the minimization of an objective cost function given by

C =
∑
i ̸=j

vij log

(
vij
wij

)
+ (1− vij) log

(
1− vij
1− wij

)
(4)

where wij are the similarities between the pairs of points
within the output space Y used the t-Student distribution with
one degree of freedom based on the Euclidean distance, and
they are defined as

wij =
(
1 + ∥yi − yj∥22

)−1

, (5)

and variable vij is the Gaussian pair similarity but with respect
to the Euclidean distance in the space of X , i.e., the distance
between xi and xj , defined as follows

vij = exp
(
−∥xi − xj∥22 /2σ

2
i

)
. (6)

The cost function is optimized by stochastic gradient descent
which iteratively updates the Y projection in terms of the
function gradient at each point [5].

B. Models of Supervised Learning Classification
We used the following battery of ML classifiers.
(1) The Logistic Regression (LR) Model is a binary classifier

based on the logistic function (also known as sigmoid) where
the input is the linear combination of the features and returns
a probability between or and 1. Specifically, the implemented
model is based on the Sklearn library with the established hy-
perparameters of the canceled penalty and using the Newton-
Cholesky resolution, being this model the optimal one used in
the grid. The solvers used in the grid are the Newton-Cholesky
model itself, the Broyden-Fletcher-Goldfarb-Shannon based
optimization model, the solver for sparse logistic regression,
and the stochastic mean gradient descent [6], [7].

(2) The LR Least Absolute Shrinkage and Selection Oper-
ator (LASSO) Model is a variant of logistic regression that
uses the L1 penalty within the cost function to penalize the
coefficients of the binary classification model. This type of
penalty is used to identify the most important variables in
the classification model. In this work, the hyperparameter was
used with the coordinate descent algorithm being the optimal
option within the grid [6], [8].

(3) The LR Ridge Model is a variant of the first LR model,
but with the L2 penalty where the objective is the minimization
of the Ridge LR cost function by estimating coefficients max-
imizing the likelihood of the data matrix subject to the sum of
squares constraint. This means that all variables contribute to
the model prediction, but their effect is reduced proportionally
to their magnitude [9]. The hyperparameter used in this model
is the solver based on the Broyden-Fletcher-Goldfarb-Shannon
algorithm being the optimal one used in the grid based on the
performance metrics of the model [6].

(4) The LR ElasticNet Model employs the LR variant using
the combination of both l1 and l2 penalties within the cost
function to regularize the model and avoid overfitting. The
combination of both penalties allows to control the trade-
off between feature selection which makes the ElasticNet
classification model useful in problems where it is required
to select relevant features and avoid overfitting [10].

(5) The Decision Tree Model is based on a decision tree in
order to train a model that can predict the class to which
a sample belongs based on the characteristics. The model
belongs to the Scikit-learn library where the hyperparameters
have been adjusted, where the chosen in the grid is the
Shannon entropy criterion in order to divide the nodes of the
tree that minimizes the log loss [6], [11].

(6) The Random Forest Model is a variant of the previous
Decision-Tree Classifier supervised algorithm, but in this case
multiple trees are combined and a prediction is generated
based on the majority of the votes of the individual trees.
The process of building this model starts with the random
selection of a sample of the k-fold training data. Subsequently,
a decision tree is constructed for that sample using the Random
Subspace method that selects a random subset of features for
each tree [12]. The optimal hyperparameter analogously to the
previous model has been fitted to Shannon’s entropy method
for the decision criterion of random trees [6].
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(7) The Support Vector Classification (SVC) Model uses
support vector machines (SVM) to separate two classes. This
algorithm uses a separating hyperplane which is optimal for
maximizing the distance between the nearest data samples
of the two classes, i.e., the maximum margin or separability
between them. Specifically, the classification model used has
been fitted with a linear kernel, this being the optimum in the
grid selections with the given metrics [6], [13].

(8) The XGBoost Model is a variant of the boosting algo-
rithm that uses decision trees as a base estimator. Specifically,
the hyperparameter used is the default one, since in the grid
selection there is the option based on decision trees and the
linear version, but the most optimal in this problem is the one
based on decision trees. In each iteration of the classification
model, a new decision tree is fitted to the residuals of the
previous model [6], [14].

(9) The Gradient Boost Classifier Model also uses boosting
techniques, but it combines several weak models (generally
decision trees, although other options exist). Specifically, the
model selected by the grid is by means of the logarithmic
loss hyperparameter at a value of 0.01, which implies that
the minimization of the loss function is optimized to improve
the performance of the model. Another of the adjusted hy-
perparameters is the squared error option, where it adjusts
the quadratic loss function to evaluate the quality of the
classification model [6], [15].

C. 5-fold Validation Dataset and Metrics

In this work we used the K-fold cross-validation technique,
with a value of k = 5, to obtain a more robust estimate of the
performance of each of the proposed classification models. In
this case the data set is divided into 5 equal parts (called folds),
where in each iteration one of the folds is used as the test set
and the remaining 4 folds as the training set, recurrently in 5
iterations of the loop. This cross-validation technique is widely
accepted and it is considered as a practice for evaluating model
performance, since its advantages include reducing the risk of
overfitting, identifying generalization problems, and providing
a more accurate estimate of model performance (by averaging
evaluation metrics) [16].

The following metrics were used for validation: Accuracy
(ACC) is a metric that measures the proportion of correct
predictions made by the model out of the total predictions;
Recall is the metric also known as sensitivity or true positive
rate commonly used in binary classification to evaluate the
performance of the model in correctly identifying positive
samples [17]; Area Under the Cruve (AUC) is normally used in
binary classification as it represents the value of the area under
the ROC (Receiver Operating Characteristic) curve, which
is the two-dimensional representation of the true positive
rate relative to the false positive rate for different decision
thresholds. The AUC value varies between 0 and 1 where a
value of 0.5 indicates a random model performance (analogous
to iterating a coin flip in prediction). This metric represents
an advantage over ACC or recall, as it provides an evaluation
of the model globally, regardless of the cutoff point [18].

D. Dataset Description

The database used in this work was created thanks to
the Innovation Oncology Laboratory of the Gynecological,
Genitourinary, and Skin Cancer Department at Clara Campal
Comprehensive Cancer Center (Hospital HM Sanchinarro,
España). This institution has been tracking biomarkers, partic-
ularly impacting healthcare since 2013. The requirements for
inclusion are based primarily on age (considering those over
18 years of age) as the disease state. The collection of these
patients passed filtering, where 54 were molecularly charac-
terized by next-generation sequencing, which was applied in
two phases: one of the phases is by whole exome sequencing
(WES), and the second option used predesigned gene panels
(Onco80).

It should be noted that the target training datasets will focus
on five: (1) where the first is a clinical dataset, (2) a dataset
containing a preprocessing with the coding of the genomes
of each patient (in an accounted form for each patient), (3)
the coding of the genomes of each patient with the assigned
genome position in each patient, (4) the combination of the
clinical data and the first mentioned coding of the genomes for
each patient and (5) the combination of the clinical data with
the second type of coding of the genomes given the position.
The clinical dataset contains the row-wise information of the
54 patients where the fields of BRCA status, age at diagnosis,
histology (with the first principal component), stage, type
of primary surgery, whether the patient has received interval
surgery, type of interval surgery, adjuvant, and finally, disease
progression (corresponding to the binary classification label
into platinum sensitive and platinum resistant) are included.

The first input dataset for the models consists of the patient
clinical data (CD), where the categorical variables go through
the one-hot encoding preprocessing process to facilitate model
training and coding. The second dataset (GD1) corresponding
to genomic data requires further preprocessing. The initial data
is based on the set of genes of each patient, wherein each
row appear the information of the genes of the same patient
and with a different extension for each patient. In this case,
the preprocessing is based on counting the genes considering
each of the patients iteratively in order to count by columns
the genes in each row of patients, where in the case that the
gene does not appear in that patient’s mutation, it is counted
as null. The third dataset (defined as GD2) consists of the
second encoding of the genome data, where the genome count
is considered with the addition of the genome position type
restriction. Therefore, the accounting of each type of gene is
filtered with each patient and given that type of position in
the gene. The fourth training dataset (CGD1) consists of the
aggregation of the CD with the data from the first type of gene
coding (GD1). However, it is necessary to homogenize the
information in the two datasets, as is the case of dimensionality
and the integration of the same set of patients in the two
datasets. Starting from the original set of 54 patients, in each
of the data sets, there are some discrepancies with the patient
data where patients appear in one set that only exists in others.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)
Fig. 1. Latent spaces. The first row corresponds to the PCA model with the CD database (a), the GD1 database (b), the GD2 data (c), the CGD1 data (d),
and the CGD2 data (e). The second row corresponds to the UMAP model with the CD (f), the GS1 data (g), the GD2 data (h), the CGD1 data (i), and the
CGD2 data (j).

In the case of the CD, three patients appear not included in
the genomic data set. In the case of the genomic data set,
one patient appears that is not recorded in the CD. Therefore,
the data set comprises 51 patients combined with the two
datasets. The fifth dataset (CGD2) combines the CD data with
the GD2 data, i.e., analogous to the previous dataset, but with
the aggregation of the second type of gene coding.

III. EXPERIMENTS

This section is divided into two main parts, where the first
one is based on the study of the IML models in each of the data
sets and observing the separability of the classes in each of the
projections of the samples in the latent space. The second part
focuses on binary classification using nine different models
(the ones discussed in Subsection II-B) and comparing the
performance of each model by comparing the accuracy, recall,
and AUC metrics on the five datasets.

A. Manifold Model Study

Figure 1 shows the set of experiments of the two IML
models (the linear PCA model and the nonlinear UMAP
model) with the five datasets. In the PCA model, it is observed
that with the CD (in Figure 1 (a)), there is no separability
between classes. In contrast, with the gene data (GD1 and
GD2), a group of samples appears in the latent space (in
Figure 1 (b) and (c)), but with little separability. On the
other hand, with the combination of both data (CGD1 and
CGD2) in Figure 1 (d) and (e), it improves with few changes.
However, it is observed that the resistant platinum class (in red
color) differs outside the latent space concerning the sensitive
platinum class (in blue color).

In the case of the nonlinear model, the behavior of the
projections in the latent space changes. In the case of the CD
(in Figure 1 (f)), it is observed that the sensitive platinum
class (blue color) appears with high separability in the right
zone (the positive infinity of the Z1 axis) of the subfigure
and the resistant platinum class (red color) appears in the left

zone (the negative infinity of the Z1 axis). However, there are
areas of the latent space where both classes converge. With
the GD1 (in Figure 1 (g)), it is observed that the UMAP
model generates two groups, but where both classes exist in
each group, therefore the classes do not differ in the first gene
coding. Figure 1 (h) shows that, analogously to the previous
one, two groups of samples are formed in the latent space,
but both classes appear in each group; however, this type
of coding considerably improves the interpretability of the
samples in the latent space. In the case of the combination
of the data, in the CGD1 (in the figure), it is observed that
two sets of manifolds appear, where in the zone towards the
positive infinity of the Z2 axis, the sensitive platinum class
is grouped (blue color) and in the zone towards the negative
infinity of the Z2 axis the resistant platinum class is grouped
(red color). In the case of the second combination (CGD2), it
is observed that the grouping of the manifold changes slightly
and, above all, denotes that the classes are more clustered
and in a linear trend. In the case of the sensitive platinum
class, many of the projections are grouped. In the resistant
platinum class (red color), a large part is grouped towards the
positive infinity of the Z3 axis, and some samples flow in the
intermediate zones with the sensitive platinum classes (with
little separability).

B. Evaluation of Binary Classification Models

In the classification models, the chosen metrics are the accu-
racy, recall, and AUC values obtained by averaging the values
stored in each k-fold iteration for the five partitions of the test
data as listed in Table I. The results denote the conclusions
obtained with the manifolds, where the datasets with clinical
and genomic data combinations offer better performance in
the classification model. Specifically, using the CGD1, two
models stand out for their performance: the LASSO LR model
and the Decision Tree model. The latter stands out above all
for having a better AUC score. However, due to the final
application of this model, which is the classification of the
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TABLE I
RESULTS OF THE ACCURACY, RECALL, AND AUC METRICS WITH THE CLASSIFICATION MODELS USED THE 5-FOLD VALIDATION METHOD WITH THE

FIVE DATASETS.

Dataset CD Dataset GD1 Dataset GD2 Dataset CGD1 Dataset CGD2

Model ACC Recall AUC ACC Recall AUC ACC Recall AUC ACC Recall AUC ACC Recall AUC

LR 0.76 0.84 0.67 0.72 0.88 0.52 0.78 0.95 0.56 0.82 0.87 0.74 0.88 0.94 0.80
LR LASSO 0.78 1.0 0.5 0.78 0.95 0.56 0.74 0.95 0.47 0.88 0.91 0.80 0.88 0.91 0.82

LR Ridge 0.82 0.97 0.60 0.82 1.0 0.58 0.78 0.97 0.53 0.86 0.88 0.80 0.88 0.94 0.80
LR ElasticNet 0.78 1.0 0.5 0.78 1.0 0.50 0.78 1.0 0.50 0.78 1.0 0.50 0.82 0.94 0.68
Decision Tree 0.78 0.81 0.74 0.67 0.80 0.45 0.68 0.81 0.51 0.86 0.88 0.81 0.84 0.88 0.79

Random Forest 0.78 0.89 0.66 0.76 0.97 0.48 0.78 1.0 0.50 0.86 0.94 0.77 0.86 0.94 0.77
SVC 0.78 1.0 0.5 0.78 1.0 0.50 0.78 1.0 0.50 0.84 0.88 0.77 0.86 0.89 0.83

XGBoost 0.80 0.94 0.65 0.74 0.95 0.47 0.76 0.95 0.52 0.86 0.94 0.77 0.84 0.91 0.75
GBC 0.78 0.86 0.61 0.74 0.93 0.49 0.76 0.97 0.48 0.84 0.89 0.79 0.86 0.91 0.79

type of platinum used in the progression of OC disease, and
because the cost of false positive rate scores is critical, the
recall score is essential. Therefore, in this case, the LASSO
LR model for this particular health application is the most
appropriate considering the equivalence of scores on the other
metrics. In the case of the second CGD2 combination, models
with better performance than in the previous case are obtained,
where the SVC model has the best AUC value. However, again
the model that seems to have the best performance is the LR
LASSO, although it should be noted that the LR model and
the LR with Ridge optimization have high Recall values with
the same accuracy score. However, the LASSO model has a
better AUC value, which generally denotes better performance.
In addition, these two previous models do not stand out in the
CGD1, which denotes that the performance of these models
does not have a robust behavior.

IV. CONCLUSION

The IML model experiments show that the nonlinear UMAP
model performs better in the generalized form on each dataset
than the linear model based on PCA dimensionality reduction.
As for the UMAP model, there are differences between each
of the five datasets. The CD has some separability, and the
genomic data with the second type of combination (GD2)
offers a higher interpretability of the samples in the class
projections. The CGD2 (the combination of the two) offers a
higher linear combination than the first combination (CGD1).
Regarding the classification model, the best-performing model
is the LR LASSO model considering the CGD2 considering
the critical criterion of recall metric due to the high cost of
false positive rate within the prognosis of OC disease.
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