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Abstract—In this study, we propose and evaluate a feature
extraction methodology for the purpose of EEG-based person
recognition. To this end, the mean curve length (MCL) was
employed subsequent to the representation of EEG signals
in an orthogonal geometry through High Dimensional Model
Representation (HDMR). To analyze the effectiveness of the
methodology, we executed it on a standard publicly available
EEG dataset containing 109 subjects and acquired from 64
channels for eyes-open (EO) and eyes-closed (EC) resting-state
conditions. The proposed feature was evaluated by comparing
it to MCL, beta, and gamma band activities. According to
the performance results, applying MCL to the output of the
HDMR instead of raw data provides superior performances for
identification and authentication. The attained results promise a
novel simple, fast, and accurate biometric recognition scheme,
named HDMRMCL.

Index Terms—authentication, biometrics, EEG, HDMR, iden-
tification, mean curve length, resting-state

I. INTRODUCTION

The upsurge of portable and wireless EEG systems allows
for effective biometrics from brain signals [1]. A practical
EEG-based biometrics requires computational efficiency as
well as adequate recognition accuracy for reliability.

So far, most of the current literature apropos of EEG-
based biometrics has typically relied on spectral measures
(band power values) and functional connectivity metrics such
as coherence and phase-locking value. According to a recent
study that relied on neural sources extracted from magnetoen-
cephalographic data [2], beta-band activity was found to yield
the highest differentiation, while higher-frequency gamma
band activity was the most robust for short data segments.
Though less common, other types of features, particularly
based on signal complexity, have also been attempted in EEG-
based biometrics such as entropy measures [3]-[5], fractal
dimension [6], [7] and the aperiodic component [8].

A recent study co-authored and conceptualized by one of
us [9] showed that a very simple metric, namely “mean
curve length® (MCL) is dependent upon only a summation of
discrete-derivative of the crude sensor-level EEG signals, and
it enables rapid recognition performances even when utilized
with Euclidean distance for classification.
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High Dimensional Model Representation (HDMR) is a
divide-and-conquer algorithm proposed by Sobol [10] to
express multivariate functions with lower-variate functions.
HDMR is an efficient tool to tackle the curse of dimen-
sionality in different multivariate problems. Recent studies
have exploited HDMR for various reasons, such as reliability
analysis for the estimation of the failure probability of a
dynamic problem and to handle a geotechnical engineering
problem [11], [12]. HDMR was also employed as a meta-
modeling tool for multidimensional input-output systems [13],
[14]. Recently, HDMR has been used on tensor-type data sets
for high dimensional image processing [15], [16].

In this study, we propose HDMR as an EEG preprocessing
tool in order to improve the performance of the brainwave-
based biometric system suggested by [9]. Henceforth, one
of HDMR’s components was given as an input to MCL for
distinctive feature extraction (HDMRMCL). Subsequently, we
compared the recognition performance obtained with HDM-
RMCL to those obtained with MCL applied to low-pass
filtered EEG resting-state data and the spectral activities within
the frequency ranges of beta and gamma bands. In addition,
we endeavored to investigate the sensitivity and performance
of our proposed scheme with respect to data length, which
is one of the considerable factors for the fulfillment of a
practical real-time EEG-based biometrics system. By making
all these investigations, HDMR provides a very accurate and
rapid contribution to the biometric identification problem. To
the best of our knowledge, this is the first study to utilize
HDMR to preprocess EEG data.

This paper is organized as follows: Section II gives detailed
information on the EEG data and the methods used for
our proposed feature extraction scheme, HDMR, and MCL,
respectively. This section also provides a brief explanation of
the classification procedure performed for the identification
and authentication of neural signals. We analyze and discuss
the experimental results of the proposed EEG-based biometric
identification system in Section III. Finally, conclusive remarks
and potential future work are noted in Section IV.
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II. MATERIALS AND METHODS
A. Dataset and preprocessing

We use PhysioNet EEG Motor Movement/Imagery Dataset
that has frequently been employed in EEG-based biomet-
ric recognition [17]-[19]. This dataset was acquired from a
BCI2000 system with 64 electrodes (http://www.bci2000.0rg).
The sampling rate of the recorded signals is 160 Hz. The
dataset contains EEG recordings of eyes-open (EO) and eyes-
closed (EC) resting states of one-minute length from 109
participants. A low-pass finite impulse response (FIR) filter
was applied to each segment with a cut-off frequency of 50
Hz. In this study, we split resting-state data into a number
of segments with a fixed length varying from 0.1 s (16 data
points and 600 segments) to 15 s (2400 data points and 4
segments) and take one of them arbitrarily as a test segment
in a cross-validation manner.

B. Feature extraction

Our main purpose is to design a computationally efficient
EEG-based biometric identification and authentication system
with high recognition accuracy by utilizing HDMR and MCL
collaboratively. As a feature extractor, MCL’s simplicity pro-
vides low computational cost and high accuracy in a biometric
identification system, while HDMR highlights the individual
statistical characteristics of high-dimensional data. Thereby,
we hypothesized that combining HDMR and MCL may
help reveal superior subject-discriminative traits of individual
EEG signals while retaining computational efficiency. Figure
1 displays the flow of the proposed EEG-based biometric
identification system and exhibits how MCL is applied to
the HDMR’s three-way ( trivariate) component in this study.
Section II-B1 gives a brief explanation of HDMR on multi-
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Fig. 1: The proposed EEG-based biometric identification sys-
tem

dimensional datasets.

1) High Dimensional Model Representation (HDMR):
HDMR is a mathematical model that represents N-dimensional
data (or tensor) with the sum of arrays in ascending dimen-
sionality. These arrays are the orthogonal components of the
model, based on projections of the data in Hilbert Space

[20]. A certain element of an N-dimensional dataset can be
evaluated with HDMR expansion as follows.
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where 71 ...in are the element indices of the N-dimensional

tensor, X (for this study it is the filtered dataset organized
as 3-dimensional with segments, channels, and the number
of samples for each person). The superscript indices at the
right-hand side of Equation 1 denote the directions, while the
subscripts indicate the elements of the HDMR components.

The right-hand side components of Eq. 1 stand for the
tensors of the increasing number of dimensions. For example,
X©) is a constant component of HDMR, X (1)g are one-
way tensors (or vectors), and X'(/172)s are two-way tensors (or
matrices), and so on. Weight vectors are defined under some
conditions to determine HDMR components on the right-hand
side. The first condition is the normalization condition over
the weight vectors. For this work, we imposed the weights
as coming from the uniform distribution for simplicity, as
an example ;" direction’s weight vector is ni The second
condition is the vanishing condition imposed to ‘obtain HDMR
components uniquely. HDMR components are orthogonal to
each other through the inner product.
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Under the above conditions, the first component of HDMR to
compute is the constant component, namely X'(°), and can be
attained by projecting the dataset onto the weighted mean.
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Two-way components are computed by excluding two related
directions of the two-dimensional subspace in the same man-
ner.
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Higher order HDMR components are determined similarly
and the last term X'U172:JN) is the residual after all HDMR
components were subtracted from the data. Each one-way
component of HDMR denotes the effect of the way (or
variable) related to the component. Two-way and higher-order
components give the correlated effect of the related ways.
To utilize this property of HDMR on EEG-based biometric
identification, first, we re-organize the EEG data as a three-
dimensional tensor. Hence, for each participant, signals are
organized as a 3D tensor (X'). The dimensions of the tensor
are the number of segments, the number of channels, and the
number of samples in each segment, respectively. The three-
way component of HDMR is extracted from the expansion
with the following exclusion step.

MU = g 2 D -
Xi(l) _ 2(?7»(2) _ X/£3) —_x©
1,2,....,n1,5=1,2,...,n9,
k= 1,2,...,n3 (6)

The above component (X ((1 2;;)) is the element of the residual
term of HDMR located on ¢, 7, k indices. This three-way
component is obtained by the exclusion of the lower-order
terms and in this way feature characteristics of the signals are
purified and highlighted by HDMR. After the computation of
HDMR’s three-way component, MCL is applied to the purified
signal as HDMR’s three-way component.

2) Mean Curve Length (MCL): MCL of a time-series is
the average of the absolute values of finite differences on this
time-series [21]. It was used for epileptic seizure prediction
successfully [22]-[24]. Despite being a very simple feature,
MCL was recently shown to be highly discriminative for EEG
biometrical recognition [9]. MCL for a signal with the length
of N can be computed as follows

N-2
1
= —_— 1 —
MCL NI nzzopc(n—i- ) — x(n)] (7
where n =1,2,--- , N — 1.

C. Classification

We investigated the performance of the proposed feature
extraction method HDMRMCL by setting up the very same
classification method used in the recent MCL brainwave

biometrics study in order to make a fair comparison [9].
The effect of HDMRMCL feature extraction scheme on the
identification and authentication performances is evaluated
with Mahalanobis distance-based nearest centroid classifier.
The Classification was carried out with cross-validation by
leaving out one segment for the test stage and using the
other segments for the training stage. Both identification and
authentication results were compared with those obtained with
features via only MCL, beta (13-30 Hz; BETA), and gamma
band (30-50 Hz; GAMMA) activities. The last two spectral
bands were specifically chosen as they were found to be the
most discriminative both in our study and others [2], [3].
The proposed biometric system was evaluated by the correct
recognition rate (CRR) for the identification performance and
by equal error rate (ERR) for the authentication. Higher CRR
means better performance for identification meanwhile lower
ERR implies better performance for authentication.

III. RESULTS AND DISCUSSION

A. Identification and authentication performance

Feature extraction routines for HDMRMCL, MCL, BETA,
and GAMMA were implemented in Matlab 2018a on a laptop
with a 2.7 GHz Intel Core i7 processor. Identification was
realized by assigning the signal data to the nearest class,
while authentication was carried out with a distance threshold
being set to control whether an observation data belongs
to that class. Identification and authentication stages were
handled using Python 3 with numerical programming routines
made publicly available by Yahyei and Ozkurt (2022) [9] at
https://github.com/RezaYahyaei/Paper2022. The identification
and the authentication performances are given in Table I
in terms of average classification accuracy with standard
deviation for identification and EER for authentication. As

TABLE I: Identification and authentication performance com-
parison between HDMRMCL, MCL, BETA and GAMMA
features

Features Identification Authentitcation
EO ACC EC ACC EO EER | EER
HDMRMCL | 100.0 £ 0.0 % | 99.7 + 0.4% | 3.47% 7.49%
MCL 99.4 + 0.4% 988 £ 1.1% | 6.29% 10.40%
BETA 98.8 £ 0.7% 95.1 £ 1.3% | 17.09% 21.71%
GAMMA 95.1 £1.7% 94.6 £1.8% 14.92% 19.53%

seen from the table, MCL combined with HDMR provided
the highest identification performance compared to only MCL
and the other two EEG spectral band based features. Authen-
tication performance is also the highest with EERs of 3.47 %
and 7.49 % for the EO and EC conditions, respectively. The
superior authentication performances of HDMRMCL can also
be observed from Figures 2 and 3.

Table II shows the average runtime measurements of the
compared features for 20 runs when data segment length is 10
s. Addendum of HDMR does not increase the computational
expense heavily as it takes comparable times with the features
derived from spectral band activities. We also investigated the
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Fig. 2: Detection error trade-off (DET) curves for eyes-open
resting state of authentication. The intersection points between
the curves and the EER identity line are the equal error rates

of the related features.
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Fig. 3: Detection error trade-off (DET) curves for eyes-close
resting state of authentication. The intersection points between
the curves and the EER identity line are the equal error rates

of the related features.

TABLE II: Running times for the compared features

Feature Running Time (s)
HDMRMCL | 7.4279
MCL 2.3121
BETA 9.3044
GAMMA 7.0820
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Fig. 4: Identification accuracy change with respect to time less
than 1 seconds, {0.1,0.2,0.3,0.4,0.5,0.6,0.8} seconds.

identification performance of HDMRMCL for segments of
various time lengths. This would yield the temporal sensitivity
of the proposed scheme. Figure 4 presents the accuracies with
respect to the time segments with duration lengths of less than
a second. HDMRMCL provides higher than 90% and 95%
accuracies for as short as 0.2 seconds time duration both for
EC and EO. For time intervals shorter than 0.2 seconds, an
abrupt decrease in performance is apparent. The performances
given by HDMRMCL over a second were evaluated for longer
time segments with durations of {1,2,3,5,6,8,10,12,15}
seconds. Figure 5 displays the corresponding results compared
to only MCL results. HDMRMCL’s performance surpasses
MCL’s significantly for both EO and EC conditions and for
all durations.
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B. Discussion

Results confirmed our hypothesis by showing that the
addendum of HDMR to MCL enables distinctive neural fin-
gerprints and offers superior recognition performances when
compared to solely MCL and conventional spectral features.
Hence, it proved to be a considerable improvement on the
biometric system suggested by a recent previous study [9]
without incurring significant computational cost. A noteworthy
finding of the proposed feature extraction methodology of
HDMRMCL is its robustness to different time-lengths as brief
as 0.2 s.

Although HDMRMCL has a higher computational com-
plexity with O(e x t x k), (e is the number of channels,
¢t is the number of time points and k is the number of
segments) than that of the spectral features of beta and gamma
with O(e x t), its running time is comparable to them (see
Table II). This is because HDMR components are obtained
solely through linear multiplications and summations, thereby
avoiding the computationally intensive operations within the
feature extraction process.

IV. CONCLUSION

In this study, we proposed a novel feature extraction scheme
for EEG-based biometrics named as HDMRMCL. It employs
HDMR as an EEG preprocessor and MCL as a feature ex-
tractor being fed on a plain Euclidean classifier. HDMRMCL
was applied on a standard dataset, that has been numerously
exploited in EEG-based biometrics literature. Identification
and authentication performances for HDMRMCL were found
to be superior compared to those obtained by conventional
spectral features and MCL as such. In brief, we demonstrated
that the combination of HDMR and MCL offers a rapid, ac-
curate and robust neural biometric recognition method, which
satisfies the accuracy and the computational time requirements
of a realistic system. A further study would be to test and
validate the suggested methodology on larger EEG resting
state datasets with a higher number of subjects.
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