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Abstract—Body Surface Potential Map (BSPM) is an aug-
mented version of 12-lead Electrocardiogram (ECG) with an
increased number of electrodes that provides high density spatial
information of the cardiac potential on the torso surface for
source localization of cardiac abnormalities. A total reconstruc-
tion of BSPM is a challenging task. In this paper, we propose
a novel Generative Adversarial Network (GAN) architecture
to reconstruct 65-lead BSP from standard 12-lead ECG. We
present Time-Series GAN (TSGAN), a specially designed modi-
fied pix2pix GAN for an accurate reconstruction of time-series
BSP data. Further, we propose certain regularization terms in
the generator loss function to preserve the key morphological
properties of the generated waveform which is a major contri-
bution of this work. The proposed architecture outperforms a
Variational Autoencoder (VAE) and a baseline GAN on publicly
available dataset in reconstructing 65-lead BSP with morpholog-
ical preservation.

Index Terms—Body Surface Potential, Electrocardiogram,
ECG Morphology, Generative Adversarial Network

I. INTRODUCTION

Cardiovascular Diseases (CVD) have huge prevalence and
is regarded as the leading cause of death globally [1]. Among
the vast plethora of CVD diagnosis tools, Electrocardiogram
(ECG) remains the most commonly conducted procedure. The
12-lead ECG is the standard assessment for cardiac disorders
and is used for screening as well as monitoring, aiding health-
care professionals provide both prevention and treatment [2].
Despite being the first level diagnostic tool, 12-lead ECG lacks
spatial resolution and is insufficient in arrhythmia localization,
cardiac activation pattern mapping through myocardium, atrial
and ventricular activation abnormalities, to name a few. A
recent approach towards non invasively generating cardiac
activation maps for arrhythmic source localization, termed
as Electrocardiographic Imaging (ECGI) has gained immense
research and medical interests [3].

Electrical activity at myocardium level and successive ac-
tivation mapping can be reconstructed non-invasively from

dense Body Surface Potential Maps (BSPM). BSP, like con-
ventional 12-lead ECG, measures electrical potential of heart
at body surface but employs relatively large number of elec-
trodes (often 50 to 300) distributed throughout the thorax
surface. Dense distribution of electrodes results in higher
degree of accuracy in detecting cardiac conditions and source
level abnormalities [4]. In spite of the rich information derived
in terms of diagnostic yield, BSP is still not used widely
in clinical practices. Main reason for its non inclusion in
standard medical practice is management of huge number of
leads spread across the torso surface. Standardization of these
leads in terms of placement, signal to noise ratio, type of
electrodes, etc. are generic hindrance that has prevented the
use of BSP over standard 12-lead ECG [5]. BSP electrodes are
often made available in form of electrode vests, but custom
electrode manufacturing across multiple institutions leads to
incompatible electrode interfaces apart from the high cost
associated [6]. Selection of lead numbers and location also
varies among manufactures and several studies have argued
on the optimal number of electrodes required on the torso
surface to regenerate cardiac activation maps [7].

A way to overcome the limitations associated with man-
aging large number of physical electrodes and yet generate
dense cardiac activation information can be by use of a partial
and optimal set of body surface electrodes and reconstruct
the complete BSPM data matrix synthetically [8], often using
Machine Learning (ML) techniques [9]. ML coupled with
information from 12-lead ECG have been mostly utilized
to localize ventricular activation origin, improve efficacy of
localizing Atrial Fibrillation (AF) ablation sites [10]. There
have been limited studies on reconstruction of BSPM from a
reduced set of electrodes by using deep generative models like
Variational Autoencoders (VAE) [11]. In VAE, the encoding
distribution is regularized to generate new data from the latent
space [12]. However, the newly generated data are often noisy.
Generative Adversarial Networks (GAN) often outperform
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the traditional VAE. In spite of being extensively used in
realistic image synthesis, GANs are yet to be fully explored in
biomedical applications dealing with time-series data. In this
paper, we propose a novel conditional GAN architecture to
generate 65-lead BSP data from standard 12-lead ECG. We
claim the following novelties:

• We propose Time-Series GAN (TSGAN), a modified
pix2pix GAN [13] architecture for reconstruction of BSP
time-series from reduced set of ECG leads. We have
compared the results with the only available prior work
for generation of BSP from 12-lead ECG using VAE [11].

• Morphology-preserving regularization terms in the loss
function for an accurate reconstruction.

A brief description of our dataset is provided in Section II.
A detailed description of the proposed TSGAN architecture is
provided in Section III, followed by experimental results and
a conclusion.

II. DATASET

We have used BSP and ECG data from EDGAR database,
contributed by Radboud University, Nijmegen, Netherland
[14]. The dataset, popularly known as ‘Nijmegen’data contains
65-lead BSP signals acquired using 53 electrodes on front and
12 on back of the torso. Fig.1a shows the 9 electrode locations
for a standard 12-lead ECG configuration and the Nijmegen
BSP configuration. In 12-lead ECG configuration, there are
three limb leads, six precordial leads and three augmented
leads. The limb leads namely, lead I (= LA − RA), lead II
(= LL − RA), lead III (= LL − LA) are computed from
the three limb electrodes namely, Right Arm (RA), Left Arm
(LA), Left Leg (LL). The precordial leads are measured di-
rectly from the electrodes V 1 to V 6 placed at specific anatom-
ically standardized locations. The rest three augmented leads
aV R(= RA− (LA+ LL)/2), aV L(= LA− (LL+RA)/2)
and aV F (= LL−(LA+RA)/2) are calculated from the limb
electrodes [15].

In the Nijmegen BSP dataset, along with the potential
profiles of 65 leads, the co-ordinate information to extract
the 9 leads (limb and precordial) of 12-lead ECG are also
provided. We extract the 12-lead ECG information and use
this as input to reconstruct the complete 65-lead BSP data
using our proposed TSGAN model discussed next.

The original dataset has 16 independent recordings, each
having 9999 data-points. We rearrange them in two equal parts
in a random manner to form the training and the test set. Each
recording is broken into three non-overlapping segments of
3000 data-points which are considered as individual instances
to be applied to our model. The waveforms in the dataset
are sampled at 1000 Hz. It is strictly ensured that multiple
segments from a single recording are not mixed up in training
and test set. We apply standard data augmentation techniques
like band-pass filtering, addition of white Gaussian noise,
baseline shift, random cropping etc. [16] to enhance the
number of instances in the training set by 20 times.

(a)

(b)
Fig. 1. a) Electrode placement in conventional 12-lead ECG and the Nijmegen
BSP configuration; b) Cardiac electrical activity recorded at torso from lead
II and lead V3

III. PROPOSED TSGAN ARCHITECTURE

A GAN has two components, a generator (G) and a
discriminator (D) [17]. The generator takes random noise
as input and creates new plausible synthetic examples, the
discriminator classifies whether its input is fake (generated)
or real. Traditional GANs have no control over the types of
generated examples which can be improved by conditional
GANs [19].

The pix2pix model is a conditional GAN popularly used
in image to image translation [13]. Unlike traditional GANs,
the generator of pix2pix GAN takes a source image as input
and transforms into a translated image. The discriminator
determines whether the translated image is a plausible trans-
formation of the source image. In this paper, we propose
TSGAN, a modified pix2pix model to generate 65-lead BSP
time-series from 12-lead ECG. If x is the input (12-lead ECG),
z is the random noise, y is the target output (original 65-lead
BSP), G(x, z) is the generated 65-lead BSP, then the objective
function of a conditional GAN is represented by:

LcGAN (G,D) = Ex,y[logD(x, y)] + Ex,z[log(1−D(x,G(x, z)))]
(1)

In the original pix2pix model, the L1 loss of the pixel differ-
ence between the target and the generated image is added with
the generator loss function for minimizing during training. In
TSGAN, we minimize the L2 loss of the amplitude difference
between the target and generated 65-lead BSP which causes a
more accurate and noise-free reconstruction of time-series. A
comparison between the L1 and L2 loss functions are given
in the results sections to justify our approach. In addition, few
more regularization terms are also added to preserve the key
morphological properties in the generated waveform.

Fig.1b shows the normal ECG template of lead II and lead
V3 along with major morphological points of interest like
P,Q,R,S,T points and their intervals. These specific points in
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ECG correspond to major electrophysiological events leading
in to generation of the ECG patterns, like P wave signifies
atrial depolarization, QRS complex represents ventricular de-
polarization and T wave corresponds to ventricular repolar-
ization. The morphological patterns of these specific regions
along with their intervals vary for normal and pathological
conditions [15]. The L2 loss of the position differences of
P,Q,R,S,T peaks in the target and generated waveform on time
axis are also minimized along with the generator loss function.
The final objective of the proposed GAN is:

G∗ = argmin
G

max
D

LcGAN (G,D) + λ1.LL2sig (G)+

λ2.LL2P (G) + λ3.LL2Q(G) + λ4.LL2R(G)+

λ5.LL2S (G) + λ6.LL2T (G) (2)

where,
LL2sig (G) = Ex,y,z[||y −G(x, z)||2] (3)

The other terms, LL2P ,LL2Q ,LL2R ,LL2S ,LL2T denote the
L2 loss of time difference between the P,Q,R,S,T locations in
the target and the generated waveform. The constants, denoted
by λi, 1 <= i <= 6, in eqn. 2 can be adjusted during training
to assign higher weightage to selected portions of the BSP
waveform requiring more accurate reconstruction.
A. The Generator Model

The generator takes 12-lead ECG time-series having 3000
samples in each lead (channel) as input (dimension = (3000,
1, 12)) and maps it into 65-lead BSP (dimension = (3000,
1, 65)) using a 1D convolutional encoder-decoder structure
shown in Fig.2. The output tensor dimension of each block is
provided at the bottom of the block. The encoder has three
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Fig. 2. Generator architecture of proposed TSGAN

1D convolutional layers, with associated batch normalization
and leaky ReLU activation layer. In each layer, convolution
is performed with a kernel dimension of 5 and stride length
of 2 by applying zero-padding to the inputs. We apply 65
filters to each convolutional layer. The output is flattened
after the third layer and is applied to a dense layer with
leaky ReLU activation to get the encoded vector. The decoder
comprises a series of transposed-convolution layers having
similar kernel dimension with stride length of 2 to increase the
output dimension to eventually map into the desired output.
In order to maintain stochasticity in the output, we add 40%

dropout to different layers of the encoder. Additionally, the
input data (x) is added with low amplitude random Gaussian
noise (z).
B. The Discriminator Model

The discriminator is a 1D convolutional patchGAN discrim-
inator which takes two sets of paired inputs. The input 12-lead
ECG (x) paired with the real (y -the actual) and fake (G(x, z)
-generated) 65-lead BSP data conditioned on the input are
applied to the discriminator in separate batches. It aims to
classify whether the pair of data is real or fake by minimizing
the likelihood of a negative log identifying real and fake data.
We closely follow the patchGAN discriminator architecture
proposed in the original pix2pix model in [13]. In patchGAN
discriminator, the model outputs a tensor where each element
is corresponding to a patch of the input and the value indicates
whether the patch is real or fake. The discriminator is applied
convolutionally across the input data, averaging all responses
to provide the final output prediction. The patch size is selected
as 70x1. The discriminator in our model comprises 8 1D
convolution layers with associated batch normalization and
activation layers. Leaky ReLU is used in the first seven layers.
The final layer uses sigmoid function for classification. The
output at the end of the final block is a (30,1) tensor, where
each point represents a 70x1 patch in the input.
C. Training of Proposed TSGAN

The proposed TSGAN is implemented in Python 3.8.10
using TensorFlow 2.6.0 library. The model is trained on a
computer system having Intel® Xeon(R) 16-core processor, 64
GB of RAM and an NVidia GeForce GTX 1080 Ti graphics
processing unit. NeuroKit2 [18], a Python package for neuro-
physiological data analysis is used to extract the P,Q,R,S,T
regions. The standard procedure of training a GAN [17], [13]
is followed. The generator takes x as input and generates
G(x, z). The discriminator takes x and G(x, z) (fake) as well
as x and the actual target data y (real) as inputs. The real
and fake data are labeled by arrays of ones and zeros. Binary
cross entropy loss is defined to model the objectives of the
generator and discriminator. For the generator, we measure
the cross entropy loss of the generated images and an array
of ones. The discriminator loss is calculated by averaging
the sum of the cross entropy loss for the real and the fake
data. In each iteration, we first measure the discriminator loss
followed by the generator loss. Next, the gradient of the loss
is measured with respect to model weights using backprop-
agation to update the weights. The regularization constants
are empirically chosen for an optimum reconstruction. The
value of λ1 is selected as 50. The other constants are set
as λ2 = 1, λ3 = 10, λ4 = 20, λ5 = 15, λ6 = 20 for an
optimum reconstruction. It can be seen that that to preserve
the overall morphology of ECG, the λ1 needs to be given the
maximum weight. However, among the 5 key points (P, Q,
R, S, T) in ECG, the R and T gets the maximum weights
in regularization as they corresponds to the peaks during
ventricular depolarization and repolarization respectively.We
use Adam optimizer with a learning rate of 0.0002, and
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Fig. 3. Sample plot of reconstructed 65-lead BSP waveform from a 12-lead input ECG data in the test set as generated by our proposed TSGAN. The actual
waveform are shown in blue and the reconstructed waveform are in red

momentum parameters β1 = 0.5, β2 = 0.999 for training. The
batch size is taken as 4. The model weights are initialized from
a normal distribution with zero mean and standard deviation
of 0.02. The end-to-end GAN is trained for 200 epochs. Once
the training is done, the discriminator is discarded and the
generator model is used for BSP reconstruction on test data.

IV. EXPERIMENTAL RESULTS

In Table I, we show a comparative analysis of overall
reconstruction loss obtained by using L1 and L2 loss in the
generator loss function as a regularization term. Here, we
measure the overall reconstruction loss on the test set in terms
of Normalized Root Mean Square Error (NRMSE) between the
original and the reconstructed BSP data across various leads.
Since we are dealing with reconstruction of time-series data,
it can be observed that the reconstruction loss is much lower
in using L2 loss, as proposed in our approach, compared to
L1 loss based regularization proposed in the original pix2pix
model which was proposed for image to image translation.

Sample waveform of reconstructed 65-lead BSP data from
a 12-lead ECG in the test set along with the original wave-
form are shown in Fig.3. The reconstructed waveform closely
matches the morphology of the original waveform in almost
all leads except lead: 10, 21, 24, 34, 48, 61, 62, where the
reconstructed data are noisy. In general, the output leads,
located far from any of the base 9 leads of the input ECG
yield higher reconstruction loss.

A detailed quantitative performance analysis is shown in
Table II. The proposed TSGAN is compared with two other
approaches, the VAE-based approach in prior art [11] and a

TABLE I
COMPARISON BETWEEN USING L1 LOSS AND L2 LOSS AS A

REGULARIZATION TERM IN THE GENERATOR LOSS IN TERMS OF
RECONSTRUCTION LOSS IN NRMSE

Reconstruction loss
NRMSE

L1 loss L2 loss (Pro-
posed)

Average reconstruction
loss across all leads

0.13 0.07

TABLE II
COMPARISON OF THE PROPOSED TSGAN WITH VAE AND BASELINE

CGAN IN TERMS OF RECONSTRUCTION LOSS IN NRMSE

Model ar-
chitecture

Minimum
reconstruction
loss

Maximum
reconstruction
loss

Average re-
construction
loss

VAE [11] 0.08 (lead 13) 0.61 (lead 48) 0.31
Baseline
cGAN

0.06 (lead 24) 0.32 (lead 62) 0.18

Proposed
TSGAN

0.02 (lead 30) 0.12 (lead 62) 0.07

baseline conditional GAN (cGAN). The baseline cGAN has
an identical structure to our proposed TSGAN, but it does
not consider the morphology-specific regularization terms in
eqn.2. We also present the lead position and the NRMSE
value corresponding to the minimum and the maximum re-
construction loss along with the average reconstruction loss
for all the leads. It can be clearly observed that the TSGAN
yields the least reconstruction loss. The GAN-based models
inevitably outperform the VAE model. However, utilizing
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the morphology-preserving regularization, which is a key
contribution of the paper, we can achieve a much improved
reconstruction compared to the baseline cGAN.

In Table III, we report the maximum and average NRMSE
for RR, QRS, QT and PR interval time distances between
the actual and target waveform in the test set. An accurate
detection of the P and S points are often unreliable on noisy
ECG data. Hence, our model reports higher error values in
reconstruction of the PR and QRS segments compared to the
RR and QT segments. The TSGAN still reports the least error
for all the features, justifying its usability in morphology-
preserving reconstruction.

TABLE III
MORPHOLOGICAL ANALYSIS OF EXTRACTED FEATURES FROM THE

RECONSTRUCTED DATA W.R.T THE ORIGINAL DATA IN TERMS OF NRMSE
(ME: MAXIMUM ERROR, AE: AVERAGE ERROR, L=LEAD)

RR QRS QT PR
Model ME AE ME AE ME AE ME AE
VAE
[11]

0.26
(L24)

0.08 0.55
(L10)

0.36 0.25
(L62)

0.19 0.91
(L62)

0.77

Baseline
cGAN

0.08
(L24)

0.03 0.82
(L62)

0.35 0.26
(L24)

0.12 0.68
(L61)

0.47

Proposed
TS-
GAN

0.08
(L61)

0.02 0.38
(L62)

0.13 0.12
(L30)

0.06 0.42
(L62)

0.29

The weights for the regularizers (λ1 to λ6) are empirically
chosen based on the healthy ECG data used in the current
experiment. These weights need to be tuned for disease condi-
tions. For example in the case of ischemic disease, the weight
of the λ6 (corresponding to T) needs to be higher compared to
others. Similarly, for the scenario of Atrial Fibrillation, where
the P waves are missing or having a different morphology
in certain ECG cycles and the R-R intervals are irregular
in nature, the λ2 and λ4 would need special focus. Such
enhancements are planned as future extensions of the present
work.

V. CONCLUSION

The TSGAN model proposed in this paper can faithfully
reconstruct 65-lead BSP from standard 12-lead ECG and also
surpassed the reconstruction accuracy of other related ap-
proaches. The reconstruction reported in this paper is based on
a healthy population. The L2 loss function and incorporation
of the regularizers related to the keys points in ECG leads to
a better performance in reconstruction of BSP as compared to
previous approaches.

In future, we plan to extend the generation of BSP for
disease conditions by means of the disease specific morpholog-
ical preservation through adjustment in the loss function. The
proposed method of BSP generation can potentially remove
the hindrance associated with multiple electrode management
and yet provide high resolution cardiac activity information
that could aid in source localization of arrhythmia using
noninvasive estimations and ECGI techniques.
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