
Convolutional Neural Networks Using Scalograms
for Stress Recognition in Drivers

Pamela Zontone, Antonio Affanni, Alessandro Piras, Roberto Rinaldo
Polytechnic Department of Engineering and Architecture

University of Udine, Udine, Italy
{pamela.zontone, antonio.affanni, roberto.rinaldo}@uniud.it, piras.alessandro@spes.uniud.it

Abstract—In this paper we present a system which allows the
detection of stress in drivers by analyzing a two-dimensional
representation of their electrodermal activity Skin Potential Re-
sponse (SPR) signal, and their electrocardiogram signal. Signals
were logged during a simulated drive, in an experiment carried
out in a company using a professional car driving simulator.
Subjects had to overcome some stress-inducing events located
at specific positions during the drive. The acquired SPR and
heart rate signals are analyzed with scalogram plots, in order
to obtain a time-frequency representation of the signals. The 2D
scalogram representation is segmented into images, associated to
short time segments, which are classified using a Convolutional
Neural Network architecture. We show that the use of scalograms
can allow the system to perform well in distinguishing among
stress and non-stress situations, achieving a 91.78% accuracy.
The same system was tested on real driving data available from
a public dataset, achieving a 99.24% accuracy.

Index Terms—Stress Detection, Electrodermal Activity, Heart
Rate, Scalogram, Convolutional Neural Network

I. INTRODUCTION AND RELATED WORK

There are many emotional conditions that can be assessed in
car drivers, like fatigue, drowsiness, and stress. In particular,
the driver’s mental state affects both individual well-being and
public road safety [1]. Aggressiveness in driving behaviour
has also been increasing during the COVID-19 pandemic [2].
To provide tools to help recognize the onset of potentially
dangerous stress situations, several works in the literature
have analyzed physiological and behavioural measures such as
Electrodermal Activity (EDA), Electroencephalogram (EEG),
Electrooculogram (EOG), Electromyogram (EMG), and Elec-
trocardiogram (ECG) signals, facial expressions, and body
postures, or combined physiological and vehicle data [3]–[6].

The most prominent approaches are based on Machine
Learning (ML) and Deep Learning (DL) techniques. In [7],
for example, various ML techniques, such as the Decision
Tree, k-Nearest Neighbors, and Naı̈ve Bayes classifiers are
compared to evaluate their ability to reveal stress, based on
the analysis of the ECG, EMG, respiration rate, and EDA
Galvanic Skin Response (GSR) signals. DL architectures are
instead proposed in [8] to detect drivers’ emotional state as
well as their behavioral states (e.g., talking to the passenger
or eating). ML algorithms have also been used on EDA and
ECG data recorded from subjects while driving on a road with
stress-inducing obstacles and in different traffic conditions [9],
[10]. The performance results obtained in a scenario where car

handling setups change among different tests, still applying
ML algorithms, are instead presented in [11], [12].

The 1D signals, which are typically acquired for stress
detection, can be also converted into two-dimensional plots.
An example of the use of 2D representations is described
in [13], where 2D Continuous Recurrence Plots are origi-
nated from both hand and foot GSRs, and Heart Rate (HR)
signals, and then used as input to multimodal Convolutional
Neural Networks (CNNs) for detecting stress in subjects while
driving. An overall accuracy of 95.67%, considering 30 s
segments, has been achieved in discerning among low-level
stress and high-level stress in car drivers.

The main contribution of this paper is the investigation of a
novel system where scalograms are used as two-dimensional
representations of the input physiological signals, i.e., the EDA
Skin Potential Response (SPR) and ECG signals. Scalograms
provide localized information about the characteristics of
the input signal in time and at different scales, creating a
2D representation of the absolute value of the Continuous
Wavelet Transform (CWT) [14], [15], and they have been
recently proposed for the analysis of the ECG signal in driving
scenarios. In this paper, we extend the work of [16], [17] and
propose the use of scalograms as a representation tool of SPR
signals. In particular, scalogram plots of both SPR and HR
signals are split into images corresponding to signal segments
of small duration, and classified via a multidimensional CNN
architecture. Two case studies are considered: one using the
physiological signals used in [18], logged from individuals
driving in a professional driving simulator located in the
VI-grade company, and the other using a public dataset of
signals logged from individuals while driving in the real
world (PhysioNet Stress Recognition in Automobile Drivers
(SRAD) dataset [19]). Experimental results are promising,
with high accuracy in the two datasets, as it will be discussed
in Section III.

II. METHODS

The block scheme of the proposed system is reported in
Figure 1. As mentioned before, we consider the data coming
from two different datasets that will be described in detail in
the next section. The signals belonging to the different datasets
are preprocessed, and the scalograms from the resulting signals
are computed. These 2D plots are then split into smaller plots,
corresponding to short time interval segments. The segmented
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scalogram images are then sent as input to a deep learning
architecture for classification into “stress” and “non-stress”,
or “high-level” or “low-level” stress intervals, depending on
the considered experiment, as we will describe below in detail.

Fig. 1. Fundamental blocks of our system.

A. The datasets

Dataset 1. The first dataset used in our work has been
described thoroughly in [18]. In summary, a total of 18
subjects have been tested. They were asked to drive in a
driving simulator for about 40 minutes along a highway, trying
to overcome 12 obstacles arranged in predefined positions
along the course. The 12 obstacles were as follows: Double
lane change (right to left or left to right), Tire labyrinth,
Sponsor block (from left or from right), Slalom (from left or
from right), Lateral Wind (from left or from right), Jersey LR,
Tire trap, Stop. We recorded the data from sensors located
in different positions on the body of each subject, i.e., on
the two hands for SPR recordings, and on the chest for ECG
recordings. It was defined that a stress event started when an
obstacle became visible, i.e., 800 meters before the obstacle,
and finished 40 seconds after the obstacle. Therefore, for each
subject, we were aware of the place and the duration of the
stress-evoking events, so we could assign to the SPR and ECG
signal segments a label equal to “1” (with stress) to all of the
segments belonging to, or intersecting with, a stress event,
and a label equal to “0” (without stress) to all of the other
segments.

Dataset 2. The second dataset is available in PhysioNet and
is called Stress Recognition in Automobile Drivers (SRAD)
[3], [19]. It is composed of multiple physiological signals
recorded from 17 subjects driving in a real-world scenario,
on different road routes, such as a highway and a city route.
Various physiological signals are provided, along with an
additional signal, denoted as “marker”, which allows the
identification of both the onset and offset of each session. As
in [13], in this work we only focus on the Foot Galvanic Skin
Response (FGSR), Hand Galvanic Skin Response (HGSR),
and Heart Rate (HR) signals. As a consequence, we only
consider the signals belonging to nine individuals, i.e., subjects
06, 07, 08, 09, 10, 11, 12, 15, and 16. We take into account
the segments of the signals belonging to the rest sessions

and representing a low-level stress (giving them a label equal
to “0”), and the segments of the signals belonging to the city
sessions and representing a high-level stress (giving them a
label equal to “1”). A binary classification can be performed
using both datasets, giving us the chance to identify the various
stress situations.

B. Scalogram generation

A scalogram represents the absolute value of the CWT,
which is able to give us a time-frequency characterization
of the signal [14], [15]. The corresponding 2D plots allow
the localization of the signal characteristics both in time and
frequency. This is crucial for our application because we
are interested in time-localized event signals with peculiar
frequency domain characteristics. To create the scalogram,
we use standard Matlab routines and the generalized Morse
analytic wavelet [10], [20], setting the γ and β parameters,
which allow the definition of the wavelet shape, as γ = 3 and
β · γ = 60.

Figures 2 and 3 show an example of SPR and HR scalo-
grams generated for subjects belonging to dataset 1. For
illustration purposes, the onset and offset of each obstacle is
indicated in the figure using a yellow square line, where the
onset and offset trigger the line values to 1 and 0, respectively.
It is clearly evident how the scalograms can reveal the subject’s
stress responses when overcoming the 12 obstacles.

Fig. 2. Example of an SPR scalogram for a subject belonging to dataset 1.

Fig. 3. Example of an HR scalogram for a subject belonging to dataset 1.

Regarding dataset 1, two SPR signals are acquired from the
driver’s hands to obtain a single SPR signal by using a motion
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Fig. 4. DL architecture used in our system (with dataset 1).

artifact removal algorithm, as explained in [18]. The HR and
cleaned SPR signals are normalized to have zero mean and
unit variance before computing the scalogram. The signals are
sampled at 100 sa/s. Regarding dataset 2, the FGSR, HGSR,
and HR signals are available at a sampling rate of 15.5 Hz.
After normalization, we apply a 3rd-order median filter to
smooth the signals and reduce possible artifacts, as in [13].

The scalogram plots are then segmented into smaller images
(or sub-images), corresponding to 15 s time intervals [18] and
30 s time intervals [13] for dataset 1 and 2, respectively, with a
fixed overlap in both cases. The resulting images, however, are
subsampled along both x and y axes, to have a final dimension
of 224x224x3 (considering the three RGB components along
the z-axis).

C. Deep learning architecture

The scalogram sub-images, corresponding to the different
time intervals, are used as input to a deep learning architecture
which uses a combination of multiple convolutional neural
networks, with a dedicated CNN for each signal scalogram
representation (see Figure 4). In particular, for dataset 1,
two scalogram sub-images corresponding to each segment of
the SPR and HR signals, respectively, are the input of the
neural network, whose output is a binary level corresponding
to the “stress” and “non-stress” classes. For dataset 2, the
input to the network consists of three scalogram sub-images,
corresponding to the FGSR, HGSR, and HR signal segments,
again with a binary output indicating “high-level” or “low-
level” stress.

The proposed architecture falls within the VGG model
specifications [21]. We will denote the whole network as
“multi-VGG-CNN”. We tried different architectures with 1, 2,
and 3 CNN convolutional blocks, finally choosing a 3-block
architecture, which in our tests outperformed the other solu-

tions. We set each convolutional layer, in each block, to use
the ReLu activation function, with each block to be followed
by a max pooling operation. Dropout layers have also been
included to reduce possible overfitting on training data. Finally
the outputs of the CNNs are concatenated to provide the final
classification. The architecture and the parameters of the multi-
VGG-CNN model are shown in Table 1.

TABLE I
IMPLEMENTED MULTI-VGG-CNN ARCHITECTURE WITH RELATED
PARAMETERS: N=2 WITH DATASET 1, AND N=3 WITH DATASET 2

multi-VGG-CNN architecture
Input 1
Conv. layer 2D Filters = 32, Kernel size = (3, 3), Activation = ReLu
Conv. layer 2D Filters = 32, Kernel size = (3, 3), Activation = ReLu
Max pooling 2D Pool size = (2, 2)
Dropout 0.2
Conv. layer 2D Filters = 64, Kernel size = (3, 3), Activation = ReLu
Conv. layer 2D Filters = 64, Kernel size = (3, 3), Activation = ReLu
Max pooling 2D Pool size = (2, 2)
Dropout 0.2
Conv. layer 2D Filters = 128, Kernel size = (3, 3), Activation = ReLu
Conv. layer 2D Filters = 128, Kernel size = (3, 3), Activation = ReLu
Max pooling 2D Pool size = (2, 2)
Dropout 0.2
Flatten
Dense Nodes = 128, Activation = ReLu
Dropout 0.2
Output 1
· · ·
Input N
...
Output N
Concatenate Output 1, · · · , Output N
Dense Nodes = 128*N, Activation = ReLu
Dropout 0.2
Dense Nodes = 2, Activation = Softmax
Final Output
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TABLE II
PERFORMANCE RESULTS OBTAINED IN CASE 1 AND CASE 2, CONSIDERING BOTH DATASETS

case 1
Accuracy (%) Sensitivity (%) Specificity (%) BA (%) GM (%)

Dataset 1 91.78 89.32 94.30 91.81 91.78
Dataset 2 99.24 98.92 99.52 99.22 99.22

case 2
Accuracy (%) Sensitivity (%) Specificity (%) BA (%) GM (%)

Dataset 1 (mean ± std) 84.35 ± 3.08 85.41 ± 4.32 82.71 ± 7.10 84.06 ± 3.40 83.91 ± 3.46
Dataset 2 (mean ± std) 96.64 ± 2.17 94.59 ± 4.97 98.07 ± 2.09 96.33 ± 2.45 96.27 ± 2.53

We use two different approaches to compute the final
performance indicators, considering the two different datasets.
In the first approach (also denoted as “case 1” from now
on), which is the most typical, for training we extract some
random scalograms from each class (80% of the data), while
the remaining samples are used for testing. In the second
approach, that will be denoted as “case 2”, we consider for
the training process all the data coming from all the subjects,
except one, which will be the one on which the algorithm
will be tested. In this case, however, we include 20% of the
scalograms of the excluded subject in the training set, whereas
testing is carried out on the unseen 80% samples. In a practical
scenario, this will require that some samples, coming from
the subject under test, are acquired in advance and included
in the training set. Indeed, this procedure becomes necessary
due to the limited number of subjects available in the training
set. Performance indicators are then computed as the average
of the results obtained for each subject. The results will be
discussed in the next section.

III. EXPERIMENTAL RESULTS

The datasets used to assess the performance of the deep
learning architecture have been already described in Sec-
tion II-A. The first dataset is built by considering successive
15 s intervals, with a 5 s overlap, each one belonging to
a different class, i.e., the stress or non-stress class [18].
A 224x224x3 scalogram is associated to each 15 s interval.
Having tested a total of 18 subjects driving in a simulator, we
end up with a balanced dataset with 6390 intervals for both
classes. The second dataset is built by considering successive
30 s time intervals, with a 50% overlap, each one belonging to
the low-level or high-level stress class [13]. With 9 subjects,
considering only the time while they are driving along the
highway and city routes, we are able to extract 1972 for both
classes.

As mentioned before, for case 1, we extract 80% of scalo-
gram time intervals for training and 20% for test. To optimize
the network, 20% of the training data are used as a validation
set. For case 2, we collect the time intervals coming from all
subjects except one, which will be used as test, and this is
done for each test subject. As in case 1, 20% of the training
data has been used as a validation set. In addition, for both
cases, we choose the SGD optimizer, with a learning rate equal
to 0.001, the categorical cross-entropy as a loss function, the

number of epochs equal to 300, and the batch-size equal to
32 [22]. An early stopping procedure is also applied during
each training phase, monitoring the loss on the validation
set (with a “patience” value equal to 20). In particular, for
each epoch, it evaluates the loss function on the validation
set, and stops the training when the validation loss is not
getting smaller than the value computed some epochs before
it, according to the defined patience value. The early-stopping
procedure allows our DL algorithm to avoid overfitting the
training set. We choose the model which gives us the best
classification accuracy on the validation set, to be then applied
on the test dataset, thus evaluating the model accuracy on
previously unseen data.

In Table II we show the final performance results of our
system, applying the multi-VGG-CNN architecture on the test
sets, for both cases and both datasets. As performance indi-
cators, we include the accuracy, the sensitivity, the specificity,
the balanced accuracy (BA), and the geometric mean (GM),
which can be computed as follows:

Accuracy (%) =
TP+TN

TP+TN+FP+FN
· 100 (1)

Sensitivity (%) =
TP

TP+FN
· 100 (2)

Specificity (%) =
TN

FP+TN
· 100 (3)

BA (%) =
1

2

(
TP

TP+FN
+

TN
FP+TN

)
· 100 (4)

GM (%) =

√
TP

TP+FN
· TN

FP+TN
· 100 (5)

These figures are based on the number of true positives (TP),
false positives (FP), true negatives (TN), and false negatives
(FN), which can be calculated considering each case and each
dataset. In case 2, we indicate the (MEAN ± STD) values,
computed by averaging the results of all subjects.

As far as case 1 is concerned, we notice that the accu-
racy values are very high, for both datasets. In particular,
with dataset 1 we attain accuracy and GM values equal to
91.78%, and a balanced accuracy of 91.81%. With dataset 2,
the accuracy and the other performance indicators are much
higher, achieving an accuracy up to 99.24%, and both BA
and GM up to 99.22%. The specificity and sensitivity values
are similar, for both datasets. These results confirm that the
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model is accurate in learning how to discern between the two
different classes.

Regarding case 2, all of the performance indicators are
worse than the ones obtained for case 1. We expected this
behaviour, since in this scenario only a limited number of
intervals belonging to a subject are included in the training
procedure, and the majority of them are excluded. Never-
theless, the performance results are favorable. We obtain an
accuracy of 84.35% and 96.64% with dataset 1 and dataset 2,
respectively. It can be seen that the performance indicators are
higher for dataset 2. This could be due to the characteristics
of the physiological signals belonging to the public dataset,
and the related scalograms, which allow a better classification
of the signals. As an additional test, similarly to [16], [17]
where only the scalograms of the ECG signal are used, we
also compute (in case 2) the accuracy of our architecture when
considering the HR scalograms only (i.e., by removing the
SPR channel in Figure 4). We obtain an accuracy value of
(80.55 ± 3.77)(%) for dataset 1, and (89.85 ± 5.32)(%) for
dataset 2, which are smaller that the values reported in Table II.

Our findings, in terms of performance of DL algorithms
used in different driving scenarios, appear to be acceptable,
and higher when combining different physiological signals
compared to the use of a single signal. However, we are aware
of some of the limitations of the proposed system, such as the
use of some scalograms belonging to a subject under test in
the training process. In future works we will try to overcome
this limit, e.g., by increasing the size of the pool of subjects
in the training set.

IV. CONCLUSION

We described a system which employs a deep learning
architecture for stress detection in subjects driving in a simu-
lated environment, trying to overcome several stress-inducing
events, and in a real-world context, with different road routes
inducing different stress levels. We use the physiological sig-
nals logged from the subjects in these two different scenarios
to compute a 2D representation using scalograms. Scalograms
sub-images are then extracted, and sent to a multi-VGG-
CNN architecture which is able to capture and extract the
features that better describe the characteristics of the scalo-
grams belonging to two different classes. The performance of
the proposed system is promising, showing that by using the
scalograms computed from the physiological signals logged
from subjects while driving, we can recognize their emotional
state with acceptable accuracy.
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and I. Koglbauer, “Driver monitoring of automated vehicles by classifi-
cation of driver drowsiness using a deep convolutional neural network
trained by scalograms of ECG signals,” Energies, vol. 15, no. 2, 2022.

[18] P. Zontone, A. Affanni, R. Bernardini, A. Piras, R. Rinaldo, F. Formag-
gia, D. Minen, M. Minen, and C. Savorgnan, “Car driver’s sympathetic
reaction detection through electrodermal activity and electrocardiogram
measurements,” IEEE Transactions on Biomedical Engineering, vol. 67,
no. 12, pp. 3413–3424, 2020.

[19] A. Goldberger et al., “Physiobank, physiotoolkit, and physionet: Com-
ponents of a new research resource for complex physiologic signals.”
Circulation [Online], vol. 101, no. 23, p. e215–e220, 2020.

[20] J. Lilly and S. Olhede, “Generalized morse wavelets as a superfamily
of analytic wavelets,” IEEE Transactions on Signal Processing, vol. 60,
no. 11, pp. 6036–6041, 2012.

[21] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[22] F. Chollet et al., “Keras,” 2015, uRL: https://keras.io.

1189


