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Abstract—Motor imagery (MI) classification based on elec-
troencephalogram (EEG) signals performs an important role in
neurological rehabilitation for therapeutic proposes. Independent
Component Analysis (ICA) is a set of techniques with a solid
framework and is widely used in the signal processing area.
Inspired by ICA, Independent Vector Analysis (IVA) is an
extension of the problem for multiple datasets and explores
the correlation between different datasets through the use of
Mutual Information (Mutinf). The statistical dependency between
datasets through Mutinf could help in MI classification since
it allows a generic and homogeneous treatment of the whole
data and a possible knowledge transfer between patients. This
paper proposes an innovative approach for the Transfer Learning
MI task by exploring the minimization of mutual information
through IVA applied to motor imagery. The results show a high
correlation and small standard deviation cross-subjects.

Index Terms—Independent Vector Analysis, Transfer Learn-
ing, Motor Imagery, Brain-Computer Interface, Electroen-
cephalogram

I. INTRODUCTION

Joint Blind Source Separation (JBSS) is a multi-model
approach that has attracted the attention of the scientific com-
munity due to its wide range of applications [1]–[3]. Inspired
by the Blind Source Separation (BSS) problem, the goal of
JBSS problem is to provide source separation of unknown
sources through a set of observed mixtures, i.e., to recover
the independent latent signals of each subject exploiting the
possible correlation between signals recorded from different
subjects [4]. Independent Vector Analysis (IVA) is a technique,
from a set of JBSS methods, that generalizes Independent
Component Analysis (ICA) to multiple datasets. Such an
approach has been applied in the biomedical context using
signals from fMRI (functional Magnetic Resonance Imaging)
[5], [6] and electroencephalogram (EEG) [7], [8], showing a
substantial potential in the field.

In Brain-Computer Interface (BCI), the brain wave signals
from the subject are recorded using sensors and electrodes,
which allows a connection between the brain and the external
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world. Such a system could be categorized into three types: In-
vasive BCIs, Partially-invasive BCIs, and Non-invasive BCIs.
EEG is a non-invasive BCI method that brings forward the
ability to capture brain activity in real-time, at the level of
milliseconds, and an affordable method for measuring brain
waves on the surface of the scalp. Since the EEG presents
such benefits, a wide application of this method has been
disseminated in the biomedical area [9]–[11]. One of the
EEG applications is the Motor Imagery (MI) classification
task that aims to identify the imagined movements from the
brain’s electrical signals collected by BCI equipment without
any real motor execution [12], [13]. Moreover, recent works
also explore MI classification in the Transfer Learning (TL)
background where a model designed for one subject is reused
on a second subject.

In [14] the authors combined Euclidean alignment (EA)
with deep learning techniques such as EEGNet [15] and
ShallowNet [16] to classify the MI movements from BCI
Competiton IV Dataset 1 (DS1) using TL. The results demon-
strated the influence of EA, reaching an accuracy of 69.2% for
EEGNet and 68.9% for ShallowNet. In the work of Siwei Liu
et al. [17], the authors compare several TL methods, between
them, the CNNnet [18], EEGNet, and ShallowNet, achieving
an accuracy of 63%, 69% and 78%, respectively.

Despite the growing use of IVA in biomedical signals
processing that naturally addresses cross-subject issues, based
on our current understanding and expertise, the method was
never applied as a TL technique. The appealing approach of
exploring the independent components across subjects seems a
suitable method for TL applications. In that sense, we propose
the application of IVA as a Transfer Learning technique for
MI classification. The method is applied to the DS1 dataset
and uses three traditional classifier algorithms, Linear Discrim-
inant Analysis (LDA), Support Vector Machine (SVM), and
Multilayer Perceptron (MLP) to evaluate the performance of
the method.

In Section II, we describe the JBSS concept and IVA
method. Section III shows a brief explanation of the autore-
gressive (AR) model used for dimensionality reduction and the

1210ISBN: 978-9-4645-9360-0 EUSIPCO 2023



classifiers adopted. Section IV presents the proposed method
employing IVA as a TL method. In Section V the simulation
results are presented and evaluated. Finally, we conclude this
paper in Section VI.

II. INDEPENDENT VECTOR ANALYSIS

In the following, we describe the general concept of
the JBSS problem with K datasets, each containing N
samples, formed from linear mixtures of M independent
sources. The mixing process can be modeled by: x[k](n) =
A[k]s[k](n), 1 ≤ n ≤ N, 1 ≤ k ≤ K, s[k](n) =

[s
[k]
1 (n), . . . , s

[k]
M (n)]T ∈ RM is the concatenated source vec-

tors in each dataset and A[k] ∈ RM×M is the k-th invertible
mixing matrix, where superscript T denotes transpose, and
both are unknown.

For retrieving the sources, the prewhitening procedure is
recommended [19], where the whitening matrix V[k] was
obtained by computing V[k] = E[k]D[k]−1/2

E[k]T , D[k] is
a diagonal matrix with the eigenvalues, and E[k] is a matrix
with the eigenvectors of the correlation matrix from the mixing
vector x[k] for each dataset. With V[k], the whitening process
results in z[k](n) = V[k]x[k](n). The demixing system is given
by: y[k](n) = W[k]z[k](n), 1 ≤ n ≤ N, 1 ≤ k ≤ K.
The goal is to obtain K matrices W[k] and the corresponding
source vectors estimated y[k](n) for each dataset. Fig. 1 shows
an illustration of the concept.

Fig. 1. Joint Blind Source Separation concept.

IVA was developed based on ICA concepts and could
be considered as an extension of the latter for multiple
datasets through the mutual information minimization among
the source component vectors (SCV) [19]. The m-th SCV for
k-th dataset can be defined as: ym = [y

[1]
m y

[2]
m . . . y

[k]
m ] ∈ RK .

In IVA, SCVs are made maximally dependent within an SCV
cross K datasets and maximally independent with respect to
other SCVs. When we concatenate the mth SCV from different
K dataset, it is possible to define the Source Component
Matrix (SCM), through the concatenation of each row of y[k],
as SCMm = [y

[1]
m ,y

[2]
m , . . . ,y

[k]
m ]T ∈ RM . This process is

exemplified by Fig. 2 based on the concept shown in Fig. 1.
The IVA cost function is given by:

IIV A ≜ I[y1; . . . ;yM ]

=

M∑
m=1

H[ym]−
K∑

k=1

log |det(W[k])| − C1,
(1)

Fig. 2. Source Component Matrix.

where I[y1; . . . ;yM ] is the mutual information within the
SCVs, H(·) is entropy and C1 is a constant term that depends
only on z[K].

The minimization of the cost function (1) simultaneously
minimizes the entropy of all components and maximizes the
mutual information within each estimated SCV [19]. In this
paper, we work with IVA-G [5] that assumes a multivariate
Gaussian distribution for the SCVs, and thus only takes
second-order statistical information into account.

III. DIMENSION REDUCTION AND CLASSIFIERS

The IVA is able to obtain a new set of features. However,
due to the dimension of EEG signals, it is necessary to apply
some intermediate processes to enable proper data classifica-
tion. In the sequel, we briefly describe the dimensional reduc-
tion and classifiers methods used to implement the application
of IVA as a TL method.

A. Autoregressive model

AR model is frequently used to represent a random process
in a different dimension. This is possible due to the model
structure, where the output variable linearly depends on its
own previous values [20]. In this paper, the benefits of using
the AR model is twofold: it obtains important attributes from
the time series given by the IVA outputs, and it also reduces
data dimension due to the AR model size used. AR parameters
were extracted from each IVA output signal.

B. LDA, SVM and MLP

Linear Discriminant Analysis (LDA) is a classical machine
learning method that classifies the data in terms of statistical
measures based on the mean value and variance of the training
dataset [21]. On the other hand, Support Vector Machine
(SVM) is an efficient supervised algorithm that determines
a hyperplane in which the classes of the original problem are
“separable” [22]. Inspired by the structure of the human brain,
more specifically, in the biological neurons, the Multilayer
perceptron (MLP) is characterized by several layers of input
nodes connected as a directed graph between the input and
output layers. In this work, when IVA is combined as a
TL criterion with SVM, LDA, or MLP, the algorithm is
called IVATL-S, IVATL-L, and IVATL-M, respectively. The
classifiers inputs are given by the AR parameters obtained as
explained in Section III.A, for each subject separately.
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IV. IVA AS A TRANSFER LEARNING APPROACH

In the preprocessing stage, the EEG signals were submitted
to a holdout evaluation technique using 80% of the data for
training and 20% for testing, and following [19], the data also
was pre-whitened for each subject independently.

Considering the training data, the IVA was applied for each
class C (left hand (L) and right hand/foot (R/F)) to obtain
the W

[k]
c matrices, where k = {1, 2, 3, 4} and c = {1, 2},

that correspond to the weights values of the features extracted
for the c-th class and k-th subject. Next, considering the k-th
subject, the training and test data were multiplied by W

[k]
1 and

W
[k]
2 , followed by each corresponding whitening matrix V

[k]
1

and V
[k]
2 , which result in the IVA components y

[k]
c . Such an

approach is necessary to maintain the blind assumption about
the test data (class is unknown) [7].

As a contribution of this paper and extending the work in
[7], the Transfer Learning approach will be grounded in an
IVA ranking obtained from the SCMs correlation cross-subject
matrices, using training data. IVA ranking was built based on
the correlation between the independent components y[k]

c cross
subject for each class, in this case, y[k]

1 and y
[k]
2 . In that sense,

the classifier model selection for the test data is based on
the IVA ranking cross-subject obtained from SCMs using the
training data. The cross-subject will be selected to transfer
their classifier training weights model to the test one. Having
chosen the optimal model for each subject, the IVA features
previously stacked, are used as inputs for the MI classifiers.
The whole procedure is exemplified by Fig. 3.

Fig. 3. Algorithm block diagram for Transfer Learning using IVA ranking.

V. EXPERIMENTS AND RESULTS

In order to evaluate the performance of the algorithms, in
this section, the method was evaluated with respect to the IVA

TABLE I
AN EXAMPLE OF THE IVA RANKING AND THE CRITERION SELECTION TL

FOR CLASS LEFT (L) AND CLASS RIGHT/FOOT (R/F).

Cross-Sub. IVA ranking L IVA ranking R/F Selection

“a”

“b” 0.4369 0.4988

“f”“f” 0.5149 0.5180

“g” 0.3974 0.3730

“b”

“a” 0.4369 0.4988

“f”“f” 0.4847 0.6144

“g” 0.4415 0.3995

“f”

“a” 0.4847 0.5180

“b”“b” 0.5149 0.6144

“g” 0.5109 0.4613

“g”

“a” 0.3974 0.4613

“f”“b” 0.4415 0.3995

“f” 0.5109 0.4613

adaptation step size (µ), the number of AR coefficients (p), and
the number of hidden layers (h) and neurons (nr) from MLP.
In addition, all the results were obtained based on an average
of 20 simulations.

A. BCI Competition IV Dataset1

DS1 was provided by B. Blankertz et al. [23] and was used
as a competition dataset to recognize human subjects from
the artificial data for MI movements. Since IVA explores the
correlations between the components and we aim to analyze
the real features, in this work, we used only the 4 human
subjects. Each subject chose two classes of MI, the first class
was left hand and the second class could be chosen among
right hand, and foot or optionally, both feet. The procedure
protocol was established by a visual arrow cue indicating the
MI task for 4s, and a brief resting before the next cue. In
total, for each subject, 100 trials per class were gathered. In
this work, we use the calibration datasets from the 4 human
subjects (labeled “a”, “b”, “f”, and “g”), where each EEG
dataset contains 59 channels and the signal was downsampled
(100Hz). Signals were filtered in the 4–45 Hz bandwidth using
a finite impulse response (FIR) filter and were then averaged
and referenced.

B. IVA Ranking analysis

Based on the SCMs correlations matrices extracted from
IVA, it is possible to build a correlation ranking between sub-
jects. As an example, Tab. I shows the correlations extracted
from IVA with respect to class Left and Right/Foot from one
of the simulation scenarios. After building the IVA ranking,
for each subject, we selected the cross-subject with the higher
correlation score, e.g., the transfer option for subject “a” was
subject “f” due to the highest correlation of 0.5180; For subject
“f”, the subject chosen was “b” with a correlation of 0.6144.
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Fig. 4 presents the cross-subject selection frequency for each
subject. For subjects “a”, “b” and “g”, the subject “f” was
more often selected as a similar cross-subject, and for subject
“f” the selected one was subject “b”. These results show that
the subject “f” is a universal transfer feature subject for DS1,
which could lead to a future global TL model.
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Fig. 4. Cross-subject selection frequency for each subject: (a) subject “a”;
(b) subject “b”;(c) subject “f”;(d) subject “g”.

C. Coefficients and Adaptation Step Size Analysis

Since the method is related to the AR model, it is possible
to analyze the algorithm performance based on the number
of AR coefficients. Initially, we fixed the IVA adaptation step
size in µ = 1, while the number of coefficients p sweeps
from 1 to 10. Fig. 5(a) shows the results obtained. For IVATL-
L the algorithm achieves the maximum accuracy of 64, 9%,
while the IVATL-S presents a smooth increase result of 68.5%.
In both cases, as the number of coefficients increases, the
accuracy increases as well, until the limit of p = 10. The
best parameters choices were p = 8 for IVA-L and p = 9 for
IVA-S.

In the sequel, the IVA adaptation step size was investigated.
Based on the previous coefficients analyses and choosing the
best parameters for each classifier (IVATL-S p = 9 and
IVATL-L p = 8), µ was varied from 0.01 to 1.5. In all cases,
as shown in Fig. 5(b), as the adaptation step size increases
the classification accuracy also increases until the maximum
value with µ = 1, thereafter the performance decreases. Thus,
in both cases, the best results were achieved with µ = 1.

D. MLP Parameters Analysis

Having selected the optimal parameters, p = 9 and µ = 1,
we now investigate the IVA TL approach as input features to
the MLP classifier. MLP architecture was implemented using
the Scikit-learn (Sklearn) library for machine learning, with
a few modifications. It sweeps the number of hidden layers
and neurons to obtain the highest performance possible using
the activation function “ReLU” and the stochastic gradient-
based optimizer “Adam”. To evaluate the performance of the
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Fig. 5. (a) IVATL-S and IVATL-L performance based on the number of AR
coefficients; (b) IVATL-S and IVATL-L performance based on the adaptation
step size.

algorithm, the number of hidden layers was fixed in h = 200,
while the number of neurons nr swept from 50 to 1000.
Fig. 6(a) presents the performance of the IVATL-M varying
the number of neurons. In this case, when the number of
neurons was above 500, the performance decreased rapidly,
obtaining a maximum mean accuracy of 70.2% with 300
neurons. Sweeping the number of hidden layers from 25 to
400, at first, the algorithm is able to improve its performance,
but after 1000 layers, IVATL-M suffers a smooth decrease,
maintaining the accuracy around 70.1% as shown in Fig. 6(b).
The best result of 70, 5% was achieved with h = 100.
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Fig. 6. (a) IVATL-M performance based on the number of hidden layers; (b)
IVATL-M performance based on the number of neurons.

E. Discussion

Tab. II shows the results obtained using the IVATL-L classi-
fier with the optimal parameters of p = 8 and µ = 1, IVATL-S
classifier with the optimal parameters of p = 9 and µ = 1,
IVATL-M classifier with the optimal parameters of p = 9,
µ = 1, nr = 300 and h = 100. The obtained performances
were also compared with existing literature results, mainly TL
approaches based on deep learning using CNNnet, EEGnet,
and ShallowNet [14], [17].

Considering the three tested classifiers, IVATL-M achieved
the best overall performance, with an accuracy of 70.5%.
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TABLE II
A COMPARISON BETWEEN THE PROPOSED METHOD AND THE EEGNET,

AND SHALLOWNET AVERAGE AND STANDARD DEVIATION (SD)
CLASSIFICATION ACCURACY (%).

Method “a” “b” “f” “g” Average ± SD

CNNnet 71 60 63 58 63 ± 4.9

EEGnet 82 62 73 59 69 ± 9.1

ShallowNet 84 67 89 72 78 ± 8.8

IVATL-L 67.8 65.6 72 61.6 66.8 ± 4.3

IVATL-S 70 66.8 71.8 65.1 68.5 ± 3.1

IVATL-M 71.6 69.4 74 67 70.5 ± 3

Even though it is still lower than the performance obtained by
ShallowNet, the obtained standard deviation is much better: 3
against 8.8, suggesting that the obtained results across subjects
are statistically similar. It is also interesting to notice that
IVA-based methods were able to increase the accuracy on the
classification of subjects known to be difficult such as subjects
“b” and “g”, achieving the highest result in the first case and
only losing to ShallowNet in the second one. This suggests
that IVA TL manages to transfer relevant features from the
easiest subjects to classify to those that are harder. On the
other hand, we can also notice that the method degraded the
accuracy obtained for subjects that are known to be easy to
classify such as subject “a”. A probable explanation is that the
hardest subjects interfere with the feature extraction obtained
by IVA since they are all processed together. Nevertheless,
the results show that IVA has the potential to be used in TL
frameworks.

VI. CONCLUSION

In this work, we presented a pioneer Transfer Learning
approach for EEG motor imagery classification based on IVA.
Since IVA explores the minimization of the mutual information
to achieve independent vector analysis cross-datasets, it is
almost intuitive that IVA has potential as a TL technique. The
experimental results showed that IVA-M presented the lowest
standard deviation, showing a homogeneous distribution clas-
sification cross-subjects. Moreover, we showed how the choice
of the parameters of the algorithm such as step sizes, number
of AR coefficients, neurons, and hidden layers could affect the
accuracy. A fine adjustment of such parameters is an essential
step. For future perspectives, we consider extending the work
using more complex datasets and classifiers.
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