
Graph-Time Trend Filtering and Unrolling Network
Mohammad Sabbaqi

Delft University of Technology
m.sabbaqi@tudelft.nl

Elvin Isufi
Delft University of Technology

e.isufi-1@tudelft.nl

Abstract—Reconstructing missing values and removing noise
from network-based multivariate time series requires developing
graph-time regularizers capable of capturing their spatiotempo-
ral behavior. However, current approaches based on joint spa-
tiotemporal smoothness, diffusion, or variations thereof may not
be effective for time series with discontinuities across the graph
or time. To address this challenge, we propose a joint graph-
time trend filter operating over a product graph representing
spatiotemporal relations. Additionally, we develop a graph-time
unrolled neural network to learn the prior from the data, which is
based on the alternating direction method of multipliers iterations
of the graph-time trend filter and on graph-time convolutional
filters. Numerical tests with two synthetic and four real datasets
corroborate the effectiveness of both approaches, highlight their
inherent trade-offs, and show they compare well with state-of-
the-art alternatives.

Index Terms—Graph-time signal processing, graph unrolled
networks, trend filtering on graphs.

I. INTRODUCTION

Processing network-based multivariate time series is of
interest in a myriad of applications including traffic networks,
action recognition, and power networks [1]–[3], to name a
few. Two ubiquitous tasks are reconstructing missing values
in a spatiotemporal manner and removing noise. These tasks
are addressed via graph-time regularization techniques where
a joint spatiotemporal prior about the data behavior is forced
into the recovery optimization problem. For example, the
work in [4] assumes a smoothly evolving model for time-
varying graph signals where the regularizer enforces temporal
differences to be smooth over the graph. Authors in [5] employ
the same assumption but measure the temporal differences
smoothness via Sobolev norm to ensure faster convergence and
numerical stability. Differently, a stationary time-vertex frame-
work is proposed in [6] and the time-varying graph signals
are recovered by solving a Wiener optimization problem. The
work in [7] defines a separable smoothness term over temporal
and spatial domains as regularizer and unrolls the iterative
algorithm for more flexibility. Finally, the authors in [8] use
a time-varying kernel and regularize the optimization problem
with a kernel-based smoothness to account for both temporal
variations in the data and graph itself.

All these works rely on a joint spatiotemporal smoothness,
diffusion or variation thereof to reconstruct the signal. The
latter are however not useful when the time series present
discontinuities either across the graph, time or both. This is
for example the case in a traffic network where the veloc-
ity of vehicles varies sudden but sparse rather smooth and
steady. In these cases, approaches based on sparse differences

This work is supported by the TU Delft AI Labs programme.

between adjacent signal values could be of interest as they
are suitable to capture sharp transitions in the signal. These
approaches have been developed either for univariate time
series [9], images [10], or for time invariant graph data [11].
However, extending them to a joint spatiotemporal prior is
not straightforward. Here, we use product graphs to create an
effective spatiotemporal neighborhood where the nodes can
also exchange information with jointly spatial and temporal
neighbors. Defining a trend filter over product graph assures
piece-wise smoothness in the spatiotemporal domain which
enables the model to capture even diffusing trends in the data.

A fundamental challenge with regularization-based ap-
proaches is that these priors may be difficult to find or that
particular tasks cannot be addressed with simple priors, hence
leading to more complex solutions. In these instances, learning
the prior from the data or the part it cannot represent allows
for sufficient flexibility to address a wider range of tasks
while being computationally tractable. A promising approach
to achieve the latter goal comprises resorting to model-based
neural network solutions, which are deep learning approaches
where the propagation rule is based on the algorithm used to
solve regularized optimization problem [12]. Such techniques
have been widely used for image data [13], seldom for graph
time invariant data [14] but remain unexplored for time varying
network data. To adopt the latter for our setting, we build
upon the ADMM iterations of the graph-time trend filter and
employ graph-time convolutional filters in each layer so that to
improve flexibility and account for multi-hop spatiotemporal
neighboring information, while preserving the inductive biases
given by graph structure and the trend filter. In turn, this also
reduces the computational complexity of the ADMM solution.

In summary, the contribution of this work is twofold. First,
it proposed a joint graph-time trend filter to process network-
based multivariate time series containing abrupt transitions
(Section II-B). Second, it develops an unrolled neural network
for this setting to make the approach more versatile, benefit
from the data, and facilitate scalability to larger graphs (Sec-
tion III). These approaches are corroborated and compared
with competing alternatives on two synthetic and four real
datasets from traffic and sensor networks (Section IV).

II. GRAPH-TIME TREND FILTERING

A. Product Graph Representation of Multivariate Time Series

Consider a graph G = (V, E), named spatial graph of N
nodes in V = {1, . . . , N} and |E| edges in E ⊆ V × V . Let
the graph shift operator (GSO) matrix of this graph be S ∈
RN×N [15]. On top of this graph we have a multivariate time
series xt = [xt(1), . . . , xt(N)]⊤ ∈ RN , where each entry is

1230ISBN: 978-9-4645-9360-0 EUSIPCO 2023

the time series of the corresponding node. We collect T such
realizations in matrix X = [x1, . . . ,xT] where now the ith row
xi = [x1(i), . . . , xT (i)]

⊤ is a time series of node i with length
T . We can also represent the temporal dependencies in xi

through a temporal graph GT = (VT , ET) of T nodes in VT =
{1, . . . , T}, |ET | edges in ET ∈ VT × VT , and corresponding
GSO matrix ST . Each node of GT corresponds to one time
instant t and the edges are capture temporal dependencies.
Thus, the time series xi can be represented as a graph signal
over the temporal graph G, which may be a simple directed
line graph or a more complicated correlation/causation-based
structure.

While each of the graphs can be used to process the
corresponding signals individually, we will miss their spa-
tiotemporal dependencies. In the context of trend filtering,
this implies that we may be able to capture piecewise signal
transitions either spatially or temporally but not both. To
capture the latter, we use product graphs and build a joint
graph-time trend filter. Specifically, given the spatial graph G
and the temporal graph GT , their product graph is denoted by

G⋄ = GT ⋄ G = (V⋄, E⋄,S⋄) (1)

with node set V⋄ = VT ×V . Here, a node v⋄,(i,t) ∈ VT stands
for a graph-time location; hence, the edges in E⋄ connecting
graph-time locations are governed by type of the product
graph. Typical product graphs include [16]:

• Kronecker product: G⊗ = GT⊗G = (V⊗, E⊗,S⊗) has
the GSO S⊗ = ST ⊗ S. The number of edges is |E⊗| =
2|E||ET |.

• Cartesian product: G× = GT×G = (V×, E×,S×) has the
GSO S× = ST ⊗ IN + IT ⊗ S. The number of edges is
|E×| = T |E|+N |ET |.

• Strong product: G⊠ = GT⊠G = (V⊠, E⊠,S⊠) has the
GSO S⊠ = ST ⊗ IN + IT ⊗ S + ST ⊗ S. The number
of edges is |E⊠| = |E||ET |+ T |E|+N |ET |.

All these product graphs can be seen as particular instances
of a parametric product graph with GSO

S⋄ =

1∑
i=0

1∑
j=0

sij
(
Si
T ⊗ Sj

)
. (2)

The scalars {sij} could be set at the outset if a prior about the
connectivity exits or can be treated as trainable parameters so
as to learn also the spatiotemporal dependencies in the data
for the task at hand [17], [18].

Column-vectorizing X into x⋄ = vec(X) ∈ RNT we obtain
a product graph signal in which the ith entry is the signal value
at the spatiotemporal node i⋄ = (i, t).

B. Graph-Time Trend Filtering

When the time series in X present a spatiotemporal piece-
wise smooth structure, we could use the latter as a prior
to process such signals. For example, this is the case in a
social network where people in a community share a similar
political inclination different from the other communities and

their opinion varies smoothly over time. another example can
be a traffic network where velocity time series in each node is
piecewise smooth while their variation over the road network
is smooth. Trend filtering concepts developed over the product
graph G⋄ could be of interest here to capture the spatiotemporal
signal jumps.

Specifically, we column-vectorize X into x⋄ = vec(X) ∈
RNT to obtain a product graph signal in which the ith entry is
the signal value at the spatiotemporal node i⋄ = (i, t). Then,
denoting the incidence matrix of the product graph by B

(1)
⋄ :=

B and the measurements by y⋄ = vec(Y), a kth order graph-
time trend filter comprises solving

x̂⋄ = argmin
x⋄∈RNT

1

2
∥y⋄ − x⋄∥22 + γ∥B(k+1)

⋄ x⋄∥1, (3)

where γ is the regularization weight and B
(k+1)
⋄ is a higher-

order difference operator defined as

B(k+1) =

{
B⋄B

(k)
⋄ = L

k+1
2

⋄ k is odd

B⊤
⋄ B

(k)
⋄ = B⊤

⋄ L
k
2
⋄ k is even

(4)

where B⊤
⋄ = B

(1)
⋄ is the incidence matrix and L⋄ = S⋄

is the normalized Laplacian matrix of the product graph. To
understand the graph-time trend filtering operation, consider
that operation

∥B(1)
⋄ x⋄∥1 =

∑
(i⋄,i′⋄)∈E⋄

|x⋄,i⋄ − x⋄,i′⋄ | (5)

measures the spatiotemporal local difference over the product
graph G⋄. If such differences are sparse (e.g., in spatiotemporal
piece-wise signals), this acts as a spatiotemporal regularizer to
obtain the signal from noisy and/or incomplete measurements.
The kth order graph-time trend filter instead performs differ-
ently depending on the order. For an odd order, it performs
a difference operation over nodes of the graph. Instead, for
an even order it applies the difference operator on the edges.
The higher orders of graph-time trend filter perform similar
operation but on the shifted time-varying graph signal. Hence,
minimizing non-zero values of this spatiotemporal difference
leads to a time-varying signal which is piecewise smooth either
in spatial or temporal domain. The spatiotemporal resolution
to measure the smoothness mainly depends on the type of
product graph and imposed spatiotemporal couplings.

The trend filtering operation is directly controlled by the
type of product graph. For example, for the Kronecker product
operation (5) measures the difference with neighbor previous
value. Instead, for the Cartesian product we have either tem-
poral or spatial difference. Finally, if we consider a parametric
product graph, its incidence matrix has the form

B⋄ =
[√

s00 INT

∣∣ √s01 IT ⊗B
∣∣ √s10 BT ⊗ IN

∣∣ (6)
√
s11 BT ⊗ ReLU([1,−1]⊗B)

]
with B and BT are the incidence matrices of the spatial
graph G and temporal graph GT , respectively and ReLU(x) =
max{0, x} is applied element-wise. Therefore, when substi-
tuted in (5) the incidence matrices considers local differences

1231

in different ways. The first set of edges s00INT stand for self-
loops and balance the ratio between changing and keeping
the value of each node. The second set s01IT ⊗B represents
temporal connections and captures time series smoothness on
time axis, whereas the third set s10BT ⊗ IN stands for the
spatial dependencies and captures the variation over the graph.
Finally, the fourth set s11BT ⊗ ReLU([1,−1] ⊗ B) repre-
sents the spatiotemporal relations and extracts the difference
between a node value and its neighbors history.

With this in place, the graph-time trend filtering optimiza-
tion problem (3) is convex and can be solved via the alternating
method of multipliers (ADMM). To this end, we define z =
B⊤

⋄ x⋄ to segregate variables in non-differentiable function and
constraint the optimization problem to its residual. Considering
the scaled ADMM variable u, the augmented Lagrangian for
the optimization problem in (3) is

J(x⋄, z,u)=
1

2
∥y⋄−x⋄∥22+γ∥z∥1+

ρ

2
∥B⊤

⋄ x⋄−z+u∥22−
ρ

2
∥u∥22

(7)
where z and u are intermediate variables, and ρ is the ADMM
parameter. Alternating the minimization over its variables
solves the optimization problem comprising the following
equations

xℓ+1
⋄ = (INT + ρS⋄)

−1(y⋄ + ρB⋄(z
ℓ − uℓ)) (8a)

zℓ+1 = softγ(B
⊤
⋄ x

ℓ+1
⋄ + uℓ) (8b)

uℓ+1 = uℓ +B⊤
⋄ x

ℓ+1
⋄ − zℓ+1 (8c)

where softγ(·) is a standard soft threshold function as the
proximal operator of l1-norm term and enforces piecewise
smoothness. Both intermediate variables z and u are initialized
by zero vectors.

III. GRAPH-TIME TREND UNROLLING

The graph-time trend filter has three critical aspects. First,
its prior should be strongly present in the data since the
solution of (3) is biased by the regularizer. Second, it is
useful for limited spatial graphs and a small temporal windows
since the inverse in (8a) has a cubic cost O((NT)3). Third,
the ADMM may require thousands of iterations to reach a
local minima, which adds to the computational effort. When
these aspects become a challenge, we can resort to unrolled
neural networks, which exploit a recursion used to solve the
optimization problem for building a data-driven solution [12].

In the graph-time trend filtering case, we build upon the
ADMM iterations (8a)-(8c) and replace the inverse in (8a)
with a graph-time convolutional filter (GTConv. filter) of the
form

H(S⋄) =

K∑
k=0

hkS
k
⋄ (9)

where h = [h1, . . . , hK]⊤ is the filter coefficient vector that
we estimate for the task at hand [19]. The filter order K
controls the spatiotemporal resolution of the filter and allows
gathering at each node i⋄ = (i, t) signal information from
its neighbors and itself that is at most K hops away in the

product graph; see [19] for a detailed discussion. Replacing
filter (9) into (8a) and adding also a nonlinearity to enhance
its representation power, the graph-time unrolled network has
the propagation rule at layer ℓ

xℓ+1
⋄ = σ

(
Hℓ(S⋄)(x

ℓ
⋄ + ρB⋄(z

ℓ − uℓ))
)

(10a)

zℓ+1 = softγ(B
⊤
⋄ x

ℓ+1
⋄ + uℓ) (10b)

uℓ+1 = uℓ +B⊤
⋄ x

ℓ+1
⋄ − zℓ+1 (10c)

where σ(·) is an activation function and the measurement
variable y⋄ is replaced by the previous layer input xk

⋄ .
Notice that computing the update xℓ+1

⋄ in (10a) has now a
computational complexity of order O(KT (N + 2|E|)) in a
worst case scenario assuming the strong product graph and
a cyclic temporal graph. The convolutional filter has reduced
the computational complexity from a cubic order into a linear
one w.r.t. product graph dimension as it operates locally in the
vertex domain over a commonly sparse set of edges.

The graph-time unrolled network has as input a vectorized
time-varying graph signal x0

⋄ = y⋄, which, for instance,
is a noisy observation in the denoising task. This input is
propagated following (10a)-(10b) for ℓ = 1, . . . , L − 1. The
output of the final layer L constitutes the output of the
network, which can be represented in the compact form y⋄ →
Φ(y⋄;S⋄,H) := x⋆

⋄, where set H collects the KL trainable
parameters. These parameters are estimated by solving an end-
to-end empirical risk minimization problem

H⋆ = argmin
H

1

m

m∑
i=1

∥x⋆
⋄ − x⋄∥22 (11)

where we have m observation pairs (x⋄,y⋄) in the dataset.
The intermediate variable z and u can be initialized as zero
vectors, and the hyperparameters ρ and γ need to be selected
by fine-tuning. The fact that the unrolled network is build
upon the ADMM iterations and the product graph limits the
function the search space and serves as a strong inductive bias,
thus requiring a limited number of parameters to solve the task.
This is quite desirable when we have limited training samples.
Moreover, the fact that we now learn multi-hop resolution
information with the filters improves the flexibility w.r.t. the
trend filter (3) when the bias is not strongly present in the
data.

Remark 1: The role of the GTConv. filter (9) in (10a)
could also be seen as a more flexible way to represent the
Neumann expansion of the inverse. Specifically, we have that
(INT +ρS⋄)

−1 =
∑∞

k=0(−1)kρkSk
⋄ with ρ∥S⋄∥ ≪ 1. Hence,

the GTConv. filter could be seen as a more flexible truncated
inverse series where instead of using the kth power of a single
scalar (−1)kρk to weigh the information of k-hop neighbors
it learns specific parameters hk.

IV. NUMERICAL EXPERIMENTS

In this section, we evaluate the proposed model performance
on denoising and reconstruction tasks over synthetic and real-
world data. We compare graph-time unrolling network with
the following baselines:

1232

• BatchRTVG: Batch reconstruction of time-varying graph
signals [4] uses gradient method to solve an optimization
problem that its cost function minimizes the smoothness
of all the graph signals one-step shifted over time.

• GUTF: Graph unrolling trend filtering proposed in [14]
which solves and unrolls the trend filtering problem over
a spatial graph. The temporal data will be fed to this
model as distinct features.

• GraphTRSS: Time-varying graph signal reconstruction
via Sobolev smoothness [20] solves an optimization
problem regularized with a smoothness term over dilated
graph signals to reconstruct time-varying graph signals.

The experiments contain two tasks of reconstruction and
denoising of time-varying graph signals. All the experiments
are applied on the following datasets:

• Synthetic data: For the synthetic data, we generate an
undirected stochastic block model with C = 5 communi-
ties and N = 100 nodes. The edges are independent ran-
dom variables with probability of pe for nodes in different
communities and pi = 0.8 for nodes in a community. The
time-varying graph signals are originated from a smooth
random signal over each community xc = N (µc, L

†
c) and

diffused over the graph with operator exp−tL.
• Traffic data: PEMS-BAY and METR-LA datasets are

used in this category. PEMS-BAY contains six months
of traffic measurements over 325 nodes in Bay area
with a 5 minutes resolution. METR-LA includes the
traffic data of 207 nodes located on the highways of Los
Angeles County with same resolution. The shift operator
is a directed adjacency matrix extracted from the road
distance matrix.

• Weather data: We evaluated our model over two bench-
mark weather datasets, Molene and NOAA. The Molene
dataset contains 744 weather recordings over 32 stations
in a region of France with an hourly resolution. The
NOAA dataset consists of 8579 hourly temperature mea-
surements across 109 stations in the U.S.. The adjacency
matrix is a normalized Laplacian matrix deployed by
using a Gaussian kernel over the distance matrix.

In all the experiments, the ADAM optimizer is used to train
the model and an unweighted directed graph is the temporal
graph GT . The performance is measured using root normalized
mean square error (rNMSE).

Reconstruction In this task, we mask the original data ran-
domly to generate missing values where each entry of the mask
J is an independent Bernoulli random variable with probability
p. Having the masked data, we divide it into 50%−20%−10%
splits for train, validation, and test, respectfully. We generate
the dataset by extracting X ∈ RN×T data points in each split.
Finally, we train our model with 5 layers, GTConv. filter order
K = 3, and temporal window T = 5.

Table I indicates the results for p = 0.75. On the synthetic
data, the proposed method and GUTF outperform the others
as they both use piecewise smoothness. However, in pe =
0.8 case, this assumption is violated and their performances

decrease, yet, they perform better than the rest due to having
learnable parameters. In the traffic dataset, learning methods
outperform the others again, but the proposed model performs
better than GUTF as it considers temporal dependencies in
the data. The parametric and recursive model are having better
results since they can adapt the spatiotemporal structure during
the training phase. Finally, similar pattern to traffic data occurs
in the NOAA dataset while Molene results differ. The learnable
models underperform as the amount of available data in this
experiment is not enough and also the data is highly smooth
over both graph and time.

Denoising
In this task, we add white Gaussian noise to our data and

the goal is removing the noise and reconstructing the original
data. The learning setup is similar to the reconstruction task
but for 8 layers.

Table 2 presents the denoising performance for signal to
noise ratio SNR = 5dB. It can be observed the unrolling
models outperform others as they learn parameters and adapt
themselves to the task at hand. The only exception is the
Molene dataset where the unrolling models fail due to the
lack of data. The proposed model mostly performs better as
it considers the spatiotemporal connections in the data and
the parametric model even learns the spatiotemporal coupling
while training. It should be noted that the unrolling model
succeeds to detect pievewise smooth patterns in the data
through its structure while the objective function is the MSE
between the output and the label. This can be seen in synthetic
data experiment on pe = 0.8 where the violation of piecewise
smoothness leads to the reduction of performance.

Product graph’s role: We investigated the proposed model
performance for different types of product graph on distinct
applications. As Table III suggests, the unrolling models
perform better than optimization ones since they adapt learning
parameters to the task during training. The difference accentu-
ates in the NOAA dataset where the piece-wise smoothness as-
sumption breaks, yet, unrolling models manage to reconstruct
while ADMM ones fail. Results also indicate that the type of
product graph highly depends on the task so performance is
independent of the product graph type in general. This obser-
vation supports the performance of parametric product graph
which adapts the product graph structure to the application.

V. CONCLUSION

This work proposes a framework to process network-based
multivariate time series with abrupt transitions over the graph,
time, or both. This is achieved by first using product graphs
to represent the spatiotemporal signal proximities and then
developing a joint graph-time trend filter on this structure.
When such a prior is not present in the data or computationally
demanding, we put forward a graph-time unrolled neural
network. This network builds its layers following the ADMM
iterations used to solve the graph-time trend filter and replaces
matrix inverse operations with graph-time convolutional filters.
Our experiments on signal interpolation and denoising on six

1233

TABLE I
RECONSTRUCTION ERROR IN TERMS OF RNMSE FOR DIFFERENT DATASET AND METHODS FOR p = 0.75.

Reconstruction
(rNMSE)

Synthetic Traffic Weather
pe = 0.2 pe = 0.8 PeMS-Bay METR-LA NOAA Molene

BatchRTVG [4] 0.2037 0.1891 0.2408 0.2472 0.2973 0.1880
GraphTRSS [20] 0.2011 0.1904 0.2376 0.2341 0.2510 0.1829
GT-TF [Ours] 0.1644 0.2015 0.1861 0.1899 0.2711 0.2163
GUTF [14] 0.1473 0.1610 0.1629 0.1601 0.1553 0.2239
GT-TFU [Ours] 0.1297 0.1382 0.1495 0.1471 0.1429 0.1992

TABLE II
DENOISING ERROR IN TERMS OF RNMSE FOR DIFFERENT DATASET AND METHODS FOR SNR = 5dB.

Denoising
(rNMSE)

Synthetic Traffic Weather
pe = 0.2 pe = 0.8 PeMS-Bay METR-LA NOAA Molene

BatchRTVG [4] 0.1978 0.1847 0.2112 0.2235 0.2569 0.1903
GraphTRSS [20] 0.1899 0.1824 0.2146 0.2092 0.2473 0.1815
GT-TF [Ours] 0.1572 0.1913 0.1733 0.1856 0.2694 0.1996
GUTF [14] 0.1349 0.1510 0.1477 0.1393 0.1509 0.2189
GT-TFU [Ours] 0.1084 0.1095 0.1156 0.1254 0.1219 0.1927

TABLE III
RECONSTRUCTION ERROR IN TERMS OF RNMSE FOR DIFFERENT

PRODUCT GRAPH TYPES WHERE p = 0.75.

Reconstruction
(rNMSE) pe = 0.2 PeMS-Bay NOAA

A
D

M
M Cartesian 0.1701 0.1861 0.3043

Kronecker 0.1644 0.1879 0.2899
Strong 0.1729 0.2083 0.2711

U
nr

ol
lin

g Cartesian 0.1577 0.1848 0.2309
Kronecker 0.1603 0.1822 0.2164
Strong 0.1694 0.1935 0.2291
Parametric 0.1297 0.1495 0.1429

synthetic and real-world datasets corroborate the effectiveness
of the proposed prior, as well as show superior performance
when compared with alternative solutions. Future work will
focus on characterizing the convergence and stability of the
unrolled network.

REFERENCES

[1] W. Jiang and J. Luo, “Graph neural network for traffic forecasting: A
survey,” Expert Systems with Applications, vol. 207, p. 117921, 2022.

[2] S. Yan, Y. Xiong, and D. Lin, “Spatial temporal graph convolutional
networks for skeleton-based action recognition,” Proceedings of the
AAAI Conference on Artificial Intelligence, vol. 32, no. 1, Apr. 2018.

[3] C. Zhang, D. Song, Y. Chen, X. Feng, C. Lumezanu, W. Cheng,
J. Ni, B. Zong, H. Chen, and N. V. Chawla, “A deep neural network
for unsupervised anomaly detection and diagnosis in multivariate
time series data,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 33, no. 01, pp. 1409–1416, Jul. 2019.

[4] K. Qiu, X. Mao, X. Shen, X. Wang, T. Li, and Y. Gu, “Time-varying
graph signal reconstruction,” IEEE Journal of Selected Topics in Signal
Processing, vol. 11, no. 6, pp. 870–883, 2017.

[5] J. H. Giraldo and T. Bouwmans, “On the minimization of sobolev norms
of time-varying graph signals: Estimation of new coronavirus disease
2019 cases,” in 2020 IEEE 30th International Workshop on Machine
Learning for Signal Processing (MLSP), 2020, pp. 1–6.

[6] N. Perraudin, A. Loukas, F. Grassi, and P. Vandergheynst, “Towards
stationary time-vertex signal processing,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), 2017,
pp. 3914–3918.

[7] S. Chen and Y. C. Eldar, “Time-varying graph signal inpainting via
unrolling networks,” in ICASSP 2021 - 2021 IEEE International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP), 2021,
pp. 8092–8097.

[8] D. Romero, V. N. Ioannidis, and G. B. Giannakis, “Kernel-based recon-
struction of space-time functions on dynamic graphs,” IEEE Journal of
Selected Topics in Signal Processing, vol. 11, no. 6, pp. 856–869, 2017.

[9] S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky, “ℓ 1 trend filtering,”
SIAM Review, vol. 51, no. 2, pp. 339–360, 2009.

[10] S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, “An iterative regu-
larization method for total variation-based image restoration,” Multiscale
Modeling & Simulation, vol. 4, no. 2, pp. 460–489, 2005.

[11] Y.-X. Wang, J. Sharpnack, A. Smola, and R. Tibshirani, “Trend
Filtering on Graphs,” in Proceedings of the Eighteenth International
Conference on Artificial Intelligence and Statistics, vol. 38. PMLR,
09–12 May 2015, pp. 1042–1050.

[12] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Signal
Processing Magazine, vol. 38, no. 2, pp. 18–44, 2021.

[13] Y. Li, M. Tofighi, J. Geng, V. Monga, and Y. C. Eldar, “Efficient and
interpretable deep blind image deblurring via algorithm unrolling,” IEEE
Transactions on Computational Imaging, vol. 6, pp. 666–681, 2020.

[14] S. Chen, Y. C. Eldar, and L. Zhao, “Graph unrolling networks: Inter-
pretable neural networks for graph signal denoising,” IEEE Transactions
on Signal Processing, vol. 69, pp. 3699–3713, 2021.

[15] E. Isufi, F. Gama, D. I. Shuman, and S. Segarra, “Graph fil-
ters for signal processing and machine learning on graphs,”
https://arxiv.org/abs/2211.08854, 2022.

[16] A. Sandryhaila and J. M. Moura, “Big data analysis with signal
processing on graphs: Representation and processing of massive data
sets with irregular structure,” IEEE Signal Processing Magazine, vol. 31,
no. 5, pp. 80–90, 2014.

[17] A. Natali, E. Isufi, M. Coutino, and G. Leus, “Learning time-varying
graphs from online data,” IEEE Open Journal of Signal Processing,
vol. 3, pp. 212–228, 2022.

[18] M. Sabbaqi, R. Taormina, A. Hanjalic, and E. Isufi, “Graph-time
convolutional autoencoders,” in Proceedings of the First Learning on
Graphs Conference, ser. Proceedings of Machine Learning Research,
B. Rieck and R. Pascanu, Eds., vol. 198. PMLR, 09–12 Dec 2022,
pp. 24:1–24:20.

[19] M. Sabbaqi and E. Isufi, “Graph-time convolutional neural networks:
Architecture and theoretical analysis,” https://arxiv.org/abs/2206.15174,
2022.

[20] J. H. Giraldo, A. Mahmood, B. Garcia-Garcia, D. Thanou, and T. Bouw-
mans, “Reconstruction of time-varying graph signals via sobolev
smoothness,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 8, pp. 201–214, 2022.

1234

