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Abstract—This paper presents a study of explainable AI
methods applied to video anomaly detection. Specifically, we
put forward a multidimensional evaluation protocol to evaluate
attribution methods by considering the correctness of the expla-
nations, their plausibility with respect to ground-truth anomaly
data, and the robustness of explanations across multiple time
frames. We evaluate these metrics on common gradient-based
and perturbation-based explanation techniques, which we use to
explain a 3D convolutional neural network trained on real video
data. Our results show that using specific methods generally leads
to trade-offs between the explanation performance and the higher
computational cost related to video data. In particular, gradient-
based methods achieve higher robustness across multiple frames,
whereas perturbation methods achieve higher model fidelity
scores.

Index Terms—deep learning, video anomaly detection, explain-
ability methods, quantitative evaluation

I. INTRODUCTION

Anomaly detection in video is one of the topics of interest in
video recognition using deep neural networks [1]. This task is
challenging due to the wide variety of possible behaviors that
can be considered abnormal, and these actions often happen
scarcely and with a short duration. 3D Convolutional Neural
Networks (3DCNNs) constitute one of the main category of
models that can be applied to video: they extract features both
in the spatial and temporal dimensions using 3D convolution
kernels [2]–[5] and show great performance on the anomaly
detection task [6].

Despite the success of deep models, they also behave like
black-boxes, since their complex feature extraction process
makes it difficult to understand how they operate internally.
Explainable AI (XAI) techniques aim at addressing this lim-
itation by designing methods to understand which (parts of)
inputs most likely cause a given prediction; we refer to [7]
for a review on different methods, and in addition, visual
and temporal cues in the input to video model are often hard
to disentangle [8]. More generally, the use of XAI methods
raises the concerns of whether they can correctly and faithfully
reflect the model behaviour and whether the explanations are
consistent for every frame in the video. Therefore, in this
paper, we use the practical case of video anomaly detection
to study various explanation methods applied to a trained 3D
convolutional network [5]. Using quantitative experiments, we
seek to study (1) whether the explanation methods faithfully
reflect the decision of model, (2) if the explanations are plausi-

ble and understandable for users, and (3) whether the methods
perform stably in time, with a consistent confidence for all
video frames. Our methodology consists of the following:

• We implement and train the existing I3D model [5] on
the USCD video anomaly detection dataset [9] to predict
anomalies.

• We use gradient-based and perturbation-based explain-
ability techniques to visualize and localize the anomalies
via heatmaps, thereby providing a first qualitative assess-
ment of the methods.

• We systematically assess the explainability techniques
via quantitative metrics. Specifically, we employ existing
metrics to measure the faithfulness of the explanation
w.r.t the model (referred to as model-centric), we evaluate
their plausibility via unsupervised localization of the
anomalies (referred to as human-centric), we introduce a
measure robustness for the explanations across time, and
compare the computational costs of the different methods.

The remainder of the paper is organized as follows: Section II
presents the background on 3D convolutional neural networks
and the different explainability methods considered in this
work. We describe the proposed evaluation metrics in Sec-
tion III. Our experimental results and findings are presented
in Section IV, and Section V concludes the paper.

II. RELATED WORK

A. I3D Model and Anomaly Detection

3DCNNs [2] use cube-shaped convolutional kernels on to
capture spatio-temporal features. The model considered in this
work is the Two-Stream Inflated 3D ConvNet (I3D) model [5],
which is built by inflating a 2D Inception v1 network [10] pre-
trained on the ImageNet dataset. Inception v1 uses inception
modules to alleviate the problems of explosion or vanishing of
gradients, heavy computation load and overfitting in a large-
scale network.

In surveillance videos, anomalies usually refer to the unnat-
ural activities such as theft, arson nearby buildings, intrusions,
etc. In the domain of deep learning, it is often viewed as
a video classification task [11]. When anomalies are not
differentiated, the problem boils down to a binary classification
or detection task, with successful approaches that include
3DCNNs trained both in supervised and semi-supervised set-
tings [1], [12]. In the context of anomaly detection, models

1235ISBN: 978-9-4645-9360-0 EUSIPCO 2023



should be able to predict on temporal and spatial dimensions
respectively, that means models need to decide anomalies on
frame level (i.e., temporal localization), and distinguish which
specific pixels on the frames show the abnormal behaviors
(i.e., spatial localization on pixel-level) [13].

B. Explainability Methods

In this work, we consider two categories of explainability
techniques, which are the gradient-based and perturbation-
based methods. Other methods involving deep networks as
explanation models (e.g.: transformers-based explainer [14])
are not considered here.

Gradient-based methods: These techniques exploit the
local gradients of the model function to identify the most
important inputs. The Saliency Maps method [15] uses gra-
dients obtained via the backpropagation pass to highlight the
most salient features. Similarly, Guided BackPropagation [16]
pools the positive gradients at every layer during the back-
propagation pass, which improves the quality of the saliency
map. However, these approaches are sensitive to gradient van-
ishing and saturation regimes, which can lead to incomplete
explanations. Integrated Gradients [17] alleviates these issues
by computing an approximation of the straight-path integral
of gradients, requiring more forward passes as the sampling
times increases. SmoothGrad [18] smooths the noisy gradients
effectively by averaging over multiple passes.

Perturbation-based methods: These methods are essen-
tially model-agnostic and rely on changes of the prediction
w.r.t. input perturbations. However, they usually require care-
fully designed sampling schemes and more forward model
evaluations to accurately estimate the input importance scores.
The Occlusion method [19] considers individual pixels or
patches as perturbation units, and the associated attributions
are directly given by the variation in output score as they are
removed. Nevertheless, this approach has a high computation
cost due to its exhaustive search nature. LIME [20] strongly
reduces the amount of model evaluations by removing multiple
patches at a time: the attributions are then obtained by training
and interpretable local surrogate model (e.g., LASSO) on the
observed variations. Additionally during regression, samples
are weighted according to their similarity with the original
input. KernelSHAP [21] is essentially a generalization of
LIME, where the similarity kernel used to weight the training
samples is replaced by Shapely values-based coefficients,
which are used to redistribute feature contributions according
to game theory-based considerations.

To evaluate explainable AI methods is a necessary step to
ensure that they are trustworthy [22]. However, it a multi-
dimensional problem that cannot be solved using a single
metric or user study. For instance the co-12 properties [23]
were proposed to comprehensively evaluate explainability
methods on different aspects. For instance, from a content
perspective, it is important to consider whether explanations
can correctly, completely reflect the model predictions. From
a presentation perspective, the explanation should be compact,

avoiding large or sparse presentations. From a user perspective,
the explanation should be plausible or interactable.

III. PROPOSED EVALUATION PROTOCOL

In this work, we consider a series of quantitative metrics for
different aspects of video explanations in anomaly detection.
First, we propose a group of human-centric metrics to compare
an explanation map with ground-truth labels, that is, by view-
ing the explanation process as an unsupervised localization
method to isolate the anomalies, which are then compared
with human-annotated binary masks. This scheme can be
used to compare various explainability methods together, but
it cannot fully reflect the quality of an explanation since it
does not account for the faithfulness of the explanation with
respect to the model. Therefore, we complement this study
with model-centric metrics, which consider the sensitivity of
the model when parts of the data are removed according
to the attributions. Additionally, we study the stability of
the explanations in the temporal dimension, as well as their
runtime complexities.

Human-centric metrics: We adopt the Intersection over
Union (IoU), the F1 score and the area under curve (AUC) to
measure the agreement between the explanations and ground-
truth annotations of the anomalies. The metrics are computed
respectively on clip-level (over entire single clip) and frame-
level (on the frame that has maximum of attribution when
anomalies entirely appear). Let M denote the ground-truth
mask, E denote the explanation map and Eτ the map binarized
according to the threshold τ . Then compute the IoU and F1
scores over the thresholds and select the maximum scores:

IoU = maxτ
|M ∩ Eτ |
|M ∪ Eτ |

, (1)

where the threshold τ iterates on the linear space ranging from
0 to the maximum value of attributions, N here represents the
number of steps and is set to 50 in our experiments:

τi =
i

N
× Emax, i ∈ {0, 1, 2, ..., N}. (2)

The F1 score is usually defined as the harmonic mean of the
precision and recall and is computed as:

F1 = maxτ
2TPτ

(2TP + FP + FN)τ
, (3)

where TP, FP, FN respectively stands for true positives, false
positives and false negatives. High IoU and F1 scores indicate
a good accuracy of anomalies localization. Different from the
binarization step required for the computation of the IoU and
F1 scores, the AUC accounts for the continuous nature of
heatmaps; it is obtained by plotting the true positive rate (TPR)
as a function of the false positive rate (FPR), and calculating
the area under the resulting curve. Hence, the AUC provides
a quality metric independent of the decision threshold.

Model-centric metrics: The model-centric metrics empha-
size on output change when retaining or ablating important
features and indicate how faithfully the explainability tech-
nique reflects the model decision. In this work, we adopt
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the deletion and insertion metrics [24]. The deletion metric
measures the drop in target probability when important pixels
are gradually replaced by baseline values, while the insertion
metric measures the rise of target probability when important
pixels being added from the baseline. In our experiments,
instead of directly computing the output probability, we calcu-
late the output difference w.r.t the initial predicted probability.
First, a softmax layer added on top of I3D model and the
probability of anomaly is then explained. We normalize the
resulting explanation maps after filtering out all negative
attributions. The thresholds are generated according to Eq. (2)
and are reversely iterated to compute the deletion and insertion
metrics by averaging the measured differences.

Robustness metric: To assess the robustness of explain-
ability techniques on the temporal dimension, we select the
frames on which anomalies exist and compute a series of
statistics over the frame-wise anomaly localization AUC based
on the resulting attributions and ground-truth anomaly masks:

1) Mean value of AUC (mAUC): reflects the general
anomaly-localization performance over a time period.

2) Standard deviation of AUC (stdAUC): indicates the sta-
bility of anomaly-localization along temporal dimension
in a video.

3) Coefficient of variation (Cv): a combination of the above
statistics:

Cv =
stdAUC

mAUC
(4)

The coefficient of variation is traditionally used to measure
the variability with respect to the population mean [25]. Thus,
a small deviation combined with a large mean value implies
that the explainability method has a stronger robustness along
the temporal dimension.

IV. EXPERIMENTS AND EVALUATION

In what follows, we report the training results of the I3D
model on the UCSD video anomaly dataset [9], we demon-
strate the visualizations of localizations of anomalies under
different explainability methods, and we present quantitative
evaluations on the anomaly localizations.

A. Training Results

In our experiments, we employ the I3D model with a single
RGB stream, which is pre-trained on ImageNet before kernel
inflation [5]. The model is trained on the two available scenes
from the UCSD dataset (denoted by Ped1 and Ped2), from
which we extract clips of 20 frames with a processed spatial
size of 158× 237 pixels. Each clip is labeled as anomalous if
it contains at least one anomaly frame. The model is trained
during 100 epochs with a batch size of 5 and using the Adam
optimizer and the binary cross-entropy loss, with a fine-tuned
learning rate of 0.001 and weight decay as 0.0001, which is
decreased by a factor of 0.1 every 30 epochs. We apply data
normalization and augmentation, including random cropping
and rescaling. Our trained model achieves a test clip-wise
accuracy of 88.86%, with an anomaly detection AUC of ROC
of 0.9331 on the clip-level.

B. Explanations and Localization of Anomalies

We compare and analyse Integrated Gradients, SmoothGrad,
Guided Backpropagation as for the gradient-based methods,
and KernelSHAP, GradientSHAP, LIME, and Occlusion with
small and with large perturbations as for the perturbation-
based methods. We rely on the Captum library for their
implementations [26].

For Integrated Gradients, we set the number of integration
steps to 30. The SmoothGrad method is also applied to
Integrated Gradients (IG) with 30 steps and by sampling 5
noisy inputs according to a Gaussian distribution with standard
deviation of 1.0. As for the Occlusion method, we employ a
sliding window in two different settings: first, we use a large
window of 10 frames and a spatial size 52 × 78 pixels with
a stride of 10 frames and 32 × 32 pixels, which results in
coarse-grain explanations, but with lower computation cost.
Second, we use small perturbations with a sliding window of
4 frames and 16×24 pixels with a stride of 2 frames and 8×8
pixels. For LIME, we firstly create image 3D super-pixels with
the SLIC algorithm, with 80 clusters and a compactness of 60.
The surrogate model is a LASSO regressor, as commonly used
with LIME, and we use a Gaussian similarity kernel with a
width of 1,000 for the similarity function. As for the SHAP-
related methods, KernelSHAP uses LIME to compute Shapley
value more efficiently, while GradientSHAP uses expectations
of gradients to approximate Shapley values [21]. Therefore,
KernelSHAP adopts the same feature masks obtained in LIME,
while GradientSHAP does not need any parameter settings.
For the methods that require a baseline to fill the perturbed
samples, we experiment with both Gaussian-blurred images
with a kernel of size 9 and with black images. Nevertheless, we
observed that the blurred baseline provide better explanation
maps, hence we do not include the black baseline in this paper.

C. Qualitative Results

Figure 1 shows examples of heatmaps from two clips from
both the Ped1 and Ped2 scenes. For clarity, we only display
a single frame of the 20-frames long clips, along with the
ground-truth mask of the anomalies. The attribution maps are
superimposed to the frames, with positive and negative attri-
butions rendered using red and blue color maps respectively.
The anomalies are defined by the ground-truth masks provided
in the UCSD dataset. In the first clip, the only anomaly is
the white car in the upper right corner, whereas the second
one features two anomalies, which are the biker and the
skater located on the left side. However, in this same clip,
the person pushing his bike is a misleading cue (based on the
ground-truth mask). Gradient-based methods only highlight
individual pixels, in contrast to perturbation-based methods
where the attributions appear in patches, and the areas with
the highest contributions can be recognized more easily with
the presence of yellow patches. For gradient-based methods,
we observed that IG and IG+SmoothGrad accurately localizes
the anomalies, with less leakage on other objects than Guided
Backpropagation (e.g.: irrelevant pedestrians are highlighted
in first clip) since this last technique has a higher tendency to
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original frame 

ground truth mask

IG IG+SmoothGrad Guided BP GradientSHAP

LIMEKernelSHAP Occlusion with large
perturbations

Occlusion with small
perturbations

(a) Ped1 scene.

original frame IG      IG+SmoothGrad Guided BP GradientSHAP

ground truth mask KernelSHAP LIME Occlusion with large
perturbations

Occlusion with small
perturbations

(b) Ped2 scene.

Fig. 1: Visualization of attribution maps (Ped1 and Ped2 scenes). Most left column: original frame and ground truth mask.
Right part: heatmaps for each explainability method.

behave like an edge detector [22]. For the perturbation-based
methods, LIME concentrates the attributions more towards
the ground-truth features compared to KernelSHAP. Occlusion
with large perturbations leads to more coarse-grained features
on the map, nevertheless, it has superior ability to cover
anomalies than Occlusion with small perturbations.

D. Quantitative Results and Discussion

We present a quantitative evaluation based on the evaluation
metrics described in Section III of the explanation methods.
In order to avoid variability, all reported metrics are averaged
over 40 clips selected randomly from the test set.

Human-centric metrics: We compute the IoU, F1 and
AUC statistics w.r.t to ground-truth annotations for the anoma-
lies on whole clips (clip level), and on the frame in each
clip with maximum attribution and with an anomaly (max-
attribution-frame level), since the localization performance
can vary greatly between different frames and depending
on the explanation method. Table I reports the results: as
a general observation, the gradient methods tend to perform
better than perturbations in either clip or frame-level case, with
the exception of LIME that outperforms the other methods in
the clip-level setting. In the max-attribution-frame setting, IG
and IG+SmoothGrad perform the best.

Model-centric metrics: Table II reports the faithfulness
metrics, which are computed on the clip level. It appears

TABLE I: Results on human-centric metrics (unsupervised localiza-
tion) over 40 clips. ↑ means higher is better, bold is best.

XAI methods Clip level Max-attribution-frame level
IoU↑ F1↑ AUC↑ IoU↑ F1↑ AUC↑

IG 0.1132 0.2014 0.6774 0.1950 0.3186 0.6962
IG+SmoothGrad 0.1008 0.1802 0.7134 0.1891 0.3039 0.7501

Guided BP 0.1231 0.2170 0.6243 0.1914 0.3171 0.6089
GradientSHAP 0.1115 0.1987 0.6769 0.1850 0.3047 0.6930
KernelSHAP 0.0837 0.1458 0.6746 0.1113 0.1870 0.6639

LIME 0.1515 0.2433 0.7259 0.1654 0.2604 0.7164
Occlusion lp 0.0972 0.1684 0.7432 0.1306 0.2134 0.7707
Occlusion sp 0.0986 0.1722 0.5814 0.1723 0.2609 0.6489

TABLE II: Results on model-centric metrics (faithfulness),
robustness metric over 40 clips and run time per sample. ↑ / ↓
means higher/lower is better, bold is best.

XAI methods Model-centric Robustness Runtime↓
Deletion↑ Insertion↓ mAUC↑ stdAUC↓ Cv ↓ (m:s.ms)

IG 1.42E-01 3.17E-01 0.6821 4.61E-02 6.76E-02 00:10.7
IG+SmoothGrad 7.42E-02 3.76E-01 0.7254 5.65E-02 7.84E-02 00:55.7

Guided BP 3.05E-03 5.75E-01 0.6276 4.06E-02 6.53E-02 00:00.5
GradientSHAP 1.42E-01 3.03E-01 0.6817 4.52E-02 6.65E-02 00:02.0
KernelSHAP 1.92E-01 9.91E-02 0.6747 9.37E-02 1.55E-01 00:03.2

LIME 2.82E-01 1.41E-01 0.7257 9.10E-02 1.34E-01 00:03.2
Occlusion lp 2.99E-01 1.46E-01 0.7513 8.14E-02 1.21E-01 00:07.9
Occlusion sp 2.01E-01 1.01E-01 0.5868 1.44E-01 2.41E-01 10:23.2

that perturbation-based methods can reflect the model decision
more faithfully, which could be explained by the fact that
attributions are computed directly based on the output change;
therefore, the energy of the heatmaps is more concentrated
towards the real anomalies, on top of offering a better coverage
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of the whole objects than the other methods. The limitations
of the gradient techniques described before (such as the partial
coverage of the important objects) also leads to a decrease in
insertion and deletion scores. Guided backpropagation is the
worst method on either deletion or insertion metric. LIME and
Occlusion with large perturbations perform significantly better
on the deletion test.

Robustness metrics: The second part of Table II reports
the mean and standard deviation of the previously obtained
AUCs across the time axis, and the corresponding coefficient
of variations (Cv). We observe that gradient methods are
more stable than perturbation based ones, since gradient-based
methods have a consistent localization behaviour regardless
of their accuracy, whereas the localization of perturbation-
based methods can be impacted by randomized initialization
or sampling on perturbations. In particular, KernelSHAP is the
least stable, and also has poor general anomaly localization.

Runtime: The overal computation cost largely depends
on the number of required forward and backward passes.
Guided backpropagation is the fastest method as a result of the
single required back-propagation pass. Occlusion with small
perturbations has the largest cost, since small windows results
in a large number of computations (especially in the case
of video data). Table II also shows that IG+SmoothGrad is
not ideal, due to the large number of samplings for gradient
integrals and noise-smoothing. This results in a trade-off when
considering higher performance or smaller cost.

V. CONCLUSION

To comprehensively evaluate explanable AI methods in
the context of video anomaly detection, we proposed an
evaluation protocol based on used human-centric, model-
centric and robustness metrics. We conclude that gradient-
based methods generally achieve better robustness across
multiple frames while perturbation methods reflect the model
decision more faithfully with overall better insertion and
deletion scores. From the user perspective, we found that
LIME and IG+SmoothGrad outperform other methods on the
localization of anomalous features, namely, at the clip level.
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