
Assessment of a Two-step Integration Method as an
Optimizer for Deep Learning

Paul Rodriguez
Department of Electrical Engineering
Pontifical Catholic University of Peru

Lima, Peru
prodrig@pucp.edu.pe / ORCID 0000-0002-8501-0907

Abstract—It is a known fact that accelerated (non-stochastic)
optimization methods can be understood as multi-step integration
ones: e.g. the heavy ball’s Polyak and Nesterov accelerations
can be derived as particular instances of a two-step integration
method applied to the gradient flow. However, in the stochastic
context, to the best of our knowledge, multi-step integration
methods have not been exploited as such, only as some particular
instances, i.e. SGD (stochastic gradient descent) with momentum
or with the Nesterov acceleration.

In this paper we propose to directly use a two-step (TS)
integration method in the stochastic context. Furthermore,
we assess the computational effectiveness of selecting the TS
method’s weights after considering its lattice representation. Our
experiments includes several well-known multiclass classification
architectures (AlexNet, VGG16 and EfficientNetV2) as well as
several established stochastic optimizer e.g. SGD along with
momentum/Nesterov acceleration and ADAM. The TS based
method attains a better test accuracy than the first two, whereas
it is competitive with to a well-tuned (ε / learning rate) ADAM.

Index Terms—stochastic gradient descent, gradient flow.

I. INTRODUCTION

Let F (u) represent a loss function, then a linear two-step
(TS) optimization method [1, Ch. 4] can be summarized by
uk+1 = ρ0uk + ρ1uk−1 − α · (σ0∇Fk + σ1∇Fk−1) , (1)

where ∇Fk represents ∇F (uk), and ρ = {ρ0, ρ1} and σ =
{σ0, σ1} with ρj , σj ∈ R, are the TS’ weights.

While a brief theory background on multi-step integration
methods [1, Ch. 4] and the gradient flow [2] is given in Section
II-B along with the conditions that ρ and σ should satisfy in
order to obtain a proper method (i.e. (1) converges to the
minimizer of F (u)), here we highlight that the well-known
(non-stochastic) Polyak’s [3] heavy ball and Nesterov [4]
accelerations, can be written (see Section II-B as well as [5])
as a particular instances of (1); e.g., by taking ρ = {1+γ,−γ}
and σ = {1, 0}, Fig. 1 summarizes the former case.

Linear two-step (TS) method
uk+1 = (1 + γ) · uk − γ · uk−1 − α∇Fk

= uk + γ · (uk − uk−1)− α∇Fk

Polyak’s heavy ball
zk+1 = γ · zk − α∇Fk
uk+1 = uk + zk+1

zk

Fig. 1: Summary of the relationship between the generic TS
method (1) when ρ = {1 + γ,−γ} and σ = {1, 0} and the
Polyak’s [3] heavy ball optimization method.

This research was supported by the Army Research Office (ARO) under
Grant W911NF-22-1-0296.

If we let F (u) to be defined as in (2a) and consider
that N → ∞, such in the case of applications associated
with deep learning (DL), then the well-known first order
optimization methods or any of its accelerated versions, e.g.
gradient descent (GD), Polyak’s [3] heavy ball, Nesterov’s [4]
or Anderson’s [6] acceleration, etc., become impractical.

F (u) =
1

N

N∑
n=1

fn(u), gk =
1

#Ik

∑
n∈Ik

∇fn(u) (2a,2b)

In this scenario, stochastic GD (SGD), which uses a noisy
gradient approximation (computed over set Ik, a random
fraction of the {1, 2, . . . , N} set; see (2b)), has became crucial.
In its most basic form, the main inner loop of the SGD
algorithm can be written as

zk+1 = γ · zk − α · gk, uk+1 = uk + zk+1, (3a,3b)

where gk is defined as in (2b); if γ = 0 then (3a)-(3b) sumarize
the SGD algorithm, whereas, if γ > 0, they summarized the
well-known SGD+momentum (SGD+M) variant.

While there exists several more elaborated SGD variants
(see Section II-C along with Algorithm 1 and Fig. 3) such
RMSprop [7], AdaDelta [8], ADAM (and its variant AdaMax)
[9], AMSGrad [10], AdaBound / AMSbound [11], Nadam
[12], EAdam [13], AdaBelief [14], adaptive SGD+M [15], etc.
none of them share the structure of a “direct” linear two-step
optimization adapted to the stochastic scenario, i.e.

uk+1 = ρ0 · uk + ρ1 · uk−1 − α · (σ0 · gk + σ1 · gk−1) , (4)

nor, to the best of our knowledge 1, the stochastic algorithm
summarized by (4), where gk is defined as in (2b), has been
assessed for the DL scenario. Given the practical performance
[17] of SGD+M, this observation is worth pursuing.

In particular, in this paper, we focus on assessing the perfor-
mance of (4) when training several well-known classification
architectures (e.g. AlexNet [18], VGG16 [19] and Efficient-
NetV2 [20]); furthermore, in our reproducible (TensorFlow
based) experiments we include the performance of three well-
established optimizers as baseline. Moreover, we also propose
a simple procedure to select the ρ and σ weights in (4) base

1Here we highlight that the unpublished work [16] proposed to use the
“effective gradient flow” instead of using the gradient norm of a network as a
proxy to study its optimization dynamics. However (4) is not even indirectly
mentioned in such work.

1245ISBN: 978-9-4645-9360-0 EUSIPCO 2023

on the lattice representation associated to the interpretation
of (4) as a FIR filter (see Section III). In summary, in our
experiments (multiclass classification problem) the “stochastic
TS” or S-TS (i.e. iteration (4)) along with the proposed weight
selection/adaptation attains a better test accuracy value than
SGD+M and SGD-Nesterov. However a well-tuned ADAM
optimizer is slightly superior to the S-TS method.

II. RELATED WORK

A. Non-stochastic accelerated methods

In this Section we succinctly review the Polyak’s [3] heavy
ball and Nesterov [4] accelerations; the rationality is to then
highlight, in Section II-B, that both methods are particular
instances of the two-step linear optimization method. While
other accelerated methods (i.e. Anderson [6]) may be cast as
linear multistep methods, they are not considered here.

1) Polyak’s [3] heavy ball (PHB) : extends the standard
GD algorithm by incorporation a short-term memory (for the
gradient): while the classical PHB method is summarized in
Fig. 1, its current iterate can be interpreted as the result of a
standard GD step plus a momentum, which depends on past
gradient values and constant γ (easily observed if zk+1 is
replaced into uk+1 recursively in Fig. 1). [15] is a recently
proposed adaptive variant.

2) Nesterov’s [4] acceleration (NTRV) : also uses a short
term memory: it first generates an extrapolation (yk+1 iterate
in Fig. 2) between the current and past iterates, which is
controlled by the inertial sequence γk, to then proceed with
a standard GD step (uk+1 iterate in Fig. 2). The NTRV
method is proven to be optimal on the class of strongly convex
functions.

B. Linear two-step (TS) method (see (1))

For a detailed review of the general linear multi-step inte-
gration method we recommend [1, Ch. 4]. On what follows we
will focus on the main results associated with the TS method,
which are mainly summarized from [5].

For smooth convex and continuous functions, the gradient
flow [2] is a smooth curve defined by (5). While its numerical

ẋ(t) = ∇F (x(t)) (5)

interpretation leads to integration methods (e.g. Euler, Runge-
Kutta and, in general, multi-step integration methods [1]), it
is also related to optimization methods. For instance, if we
consider the Taylor expansion of x(t+h) along with t = k ·h
(i.e. the Euler method to integrate (5)) then we obtain GD:

x(t+h) ≈ x(t)+h · ẋ(t) −→ xk+1 = xk +h ·∇F (xk). (6)

Multi-step integration methods [1, Ch. 4] improve the
rate of convergence of the classical Euler method by using
more previous information (past gradients and iterates). As
we mentioned in the Introduction, given the success of the
SGD+M [17], which is PHB in the stochastic context (see
also Fig. 1), it seems natural to speculate (stochastic context)
about the performance of other TS’s direct instances when
compared to established SGD variants.

Here we acknowledge that, contrary to the PHB algorithm,
the NTRV one (which is also related to the TS method, see Fig.
2) is not a popular choice in the stochastic context, although
it may attain comparative or even better performance than
SGD+M for some classification problems [21].

Nesterov

uk+1 = yk − α∇F (yk)

yk+1 = uk+1 + γk · (uk+1 − uk)

TS method

yk+1 = (1 + γk) · yk − γk · yk−1
−α · (1− γk) · ∇F (yk)
+α · γk · ∇F (yk−1)

Fig. 2: Summary of the relationship between the generic two-
step integration method (1) when ρ = {1 + γk,−γk} and
σ = {1+γk,−γk} and the Nesterov’s [4] accelerated method.

The convergence of a multistep linear method is determined
[5, Section 3.1] by the selection of its weights ρ and σ. In
particular, the TS (see (1)) results in a convergent method if
ρ0 + ρ1 = 1, σ0+σ1 = −ρ0+2, |ROOTS(ρ)| ≤ 1, (7a,7b,7c)

where ROOTS(ρ) are the roots of the polynomial ρ(z), i.e.
−ρ1−ρ0 ·z+z2. Furthermore, the region of absolute stability
(see [5, definition 2.6]) of a TS method is the set of values α·λ
for which all the roots of the polynomial ρ(z) + α · λ · σ(z),
where σ(z) = σ1 + σ0 · z, are inside the unit circle.

C. SGD’s variants

There exist several alternative approaches to summarized the
SGD algorithm as well as its variants. For that objective, in
particular, here we use the structure of algorithm 1 (adapted
from [22]; for alternative interpretations, among others, see
[23], [24]). Furthermore, Fig. 3 may be derived from it, and
naturally describes SGD variants as an “add on” set of features
that may be applied over the “vanilla” SGD.

Algorithm 1: Main inner loop of a generalized SGD
Inputs: α: Step-size. β, γ1, γ2: Decay rates. gk: (2b);

1 for k ≥ 0 do
2 αk = φ(α, k) (e.g. α/

√
k. Details in [25], [26])

3 vk = Q(gk, γ2) (usually γ2·vk−1 + (1−γ2)·gk�gk)
4 wk = ck√

vk+ε
(or ck√

vk+ε
; ck : “bias/unit correction”)

5 uk+1 = uk − αk ·wk �A(gk, γ1) + β · (uk − uk−1)
6 end

For instance, the standard SGD along with its momentum
and Nesterov variants can be obtained by setting αk = α,
vk = 1 and wk = 1 along with the proper choice for β > 0
and A(·), i.e. gk (former) or gk + β · (gk − gk−1) (latter).

The well-known AdaGrad [27] and RMSprop [7] variants
took advantage of the problem’s local geometry by setting
vk = γ2 · vk−1 + (1 − γ2) · gk · gk with γ2 = 0 (former) or
0 < γ2 < 1 (latter), i.e. exponential moving average (EMA).
Both cases also set wk = 1√

vk+ε
, A(·) = gk and β = 0.

Taking an alternative direction Adadelta [8] proposed to
used a customization of the Newton method in the SGD
context (which can also be summarized by Algorithm 1).

Taking AdaGrad and RMSprop as starting point, ADAM
[9] proposed to also use an EMA for the gradient, i.e. A(·) =

1246

γ1 · Ak−1 + (1− γ1) · gk along with a bias correction which
was encoded into ck (see line 4 in Algorithm 1).

There are several ADAM variants: AdaMax (also detailed in
[9]) used vk = max{γ2 · vk−1, |gk|} instead of the standard
choice (also used in AdaGrad and RMSprop); Nadam [12]
proposed to used the the Nesterov’s acceleration [4] on the
gradient’s EMA (not on the solution itself, as was originally
intended); AdaBelief [14] also used ADAM’s structure along
with vk = γ2 ·vk−1+(1−γ2)·(gk−Ak)2+ε, while AMSGrad
[10] considers v̂k = max{v̂k−1,vk} as means to improve
ADAM’s convergence; On the other hand, AdaBound [11] may
be described as a “ADAM more robust to large learning rate
values” for which φ(·) uses dynamic bounds; EAdam [13]
studied the impact of the ε safeguard (see line 4 in Algorithm
1) and proposed to change its location (see [13, Algorithm 2]).

SGD
Variance
correctionβ = 0

SGD+M S-NTRV
ADAGRAD

EMA

RMSPROP

Newton ADADELTA

Bias correction
A(·) 6= 1

ADAM

ADAMAX

NADAM

ADABELIEF

AMSGRAD ADABOUND ε-ADAM

Fig. 3: The relationship between SGD variants may be un-
derstood as applying a set of “add on” features (highlighted
in blue) over the “vanilla” SGD. See also Section II-C.

III. STOCHASTIC TS AND WEIGHT SELECTION

The rules to be enforced in order to obtain a proper TS
method (see (7) as well as [5, Section 3.1]) can be used to
design a family of (non-stochastic) TS for quadratic functions;
such approach leads to the well-known PHB and NTRV opti-
mizers and was carried on [5, Section 3.2] by directly analyz-
ing the roots of the polynomial Πα,λ(z) = ρ(z)+α ·λ ·σ(z).

Clearly, in the case of functions that are not strongly con-
vex, such the loss associated with a multi-class classification
problem, such straightforward approach can not be applied.
However, here we propose to take an alternative route: Instead
of directly using the Πα,λ(z)’s roots in order to enforce the
condition of them being inside the unit circle, we propose to
interpret Πα,λ(z) as a FIR filter and use its lattice [28, Chapter
6] coefficients to meet the unit circle condition.

Given a monic polynomial which represents the Z transform
of a FIR filter, e.g. H(z) = z2 +m0 · z +m1, then its lattice
representation may be computed by means of the Step-down
recursion (associated with the Levinson-Durbin [28, Chapter
5]). The original filter is minimum phase (i.e. all its roots are
inside the unit circle) if and only if all its lattice coefficients
are bounded by 1. The relationship between H(z) and its
lattice representation (Γ-coefficients) is given by (8), which,
if applied to the case of ρ(z) (see 7c)), we obtain (9).

Γ2 = m1, Γ1 + Γ1 · Γ2 = m0 −→ Γ1 =
m0

1 +m1
(8)

| − ρ1| ≤ 1,

∣∣∣∣ −ρ01− ρ1

∣∣∣∣ ≤ 1. (9a,9b)

For either case, SGD+M or NTRV, the weights related to the
past iterates (see (3a-3b)) are given by ρ0 = 1 + γk and
ρ1 = −γk, which clearly comply with (9); moreover, while
γk may be a fixed value (SGD+M), it may also vary (e.g. as
for NTRV), as long as 0 < γk < 1.

If we use (8) for the case of Πα(z), we get

| − ρ1 + ασ1| ≤ 1,

∣∣∣∣ −ρ0 + α · σ0
1− ρ1 + α · σ1

∣∣∣∣ ≤ 1; (10a,10b)

taking ρ1 = −γk, and considering2 ασ1 > 0 then (10a)
implies that as γk → 1 then α·σ1 → 0; in a practical scenario,
if we fix σ1, then any rule that increases γk can be linked
to a decreasing learning rate schedule (while motivated by
different observations, this is a well-known fact, with works
that span several decades, e.g. [29] to [30]). Furthermore, if
we consider3 that α > 0, σ0 > 0 and σ1 > 0, and re-write
(10b) as

∣∣∣ρ0−α·σ0

ρ0+α·σ1

∣∣∣ ≤ 1, then, within reasonable limits, we can
consider (11), where k represents the iteration index.

σ
(k)
0 > σ1, σ

(k)
0 ≥ σ(k−1)

0 . (11)

Based on the above analysis, then the stochastic two-step
(TS) is summarized in Algorithm 2.

Algorithm 2: Main inner loop of the stochastic-TS.
Inputs: α: Step-size. ρ, σ: TS weights. gk: (2b);

1 for k ≥ 0 do
2 αk = φ(α, k) (e.g. αk = cb

EPOCH
L c · α.)

3 ρ0, ρ1, σ0 : update s.t. (9), (11) are observed.
4 uk+1 = ρ0 ·uk+ρ1 ·uk−1−αk · (σ0 · gk + σ1 · gk−1)
5 end

IV. COMPUTATIONAL RESULTS

The simulations presented below were carried out on an
Intel i9-12900H (2.90 GHz, 24MB Cache, 64GB RAM) based
laptop equipped with a GeForce RTX 3080 graphic card.
All SGD variants implementations used in our simulations
correspond to those found in the TensorFlow 2.11 library [31];
furthermore, such methods will be labeled as “TF method”,
where method corresponds to the particular SGD variant
(SGD+M, NTRV or ADAM). Our publicly available code [32],
which includes the TensorFlow-based implementation of our
proposed algorithm, labeled “TS”, can be used to reproduce
our experimental results.

A. Hyperparameter selection

As it has been noted in [33] (and elsewhere) ADAM’s
default ε = 10−8 value (see Line 4 in Algorithm 1) does
not yield the best results. For our experiments we used
ε = 10−3 along with α ≈ 0.001, since such combination
gave, statistically, as good results as other ε/α combinations
suggested by [33, Fig. 1]. ADAM’s other parameters (EMA
related) were fixed to γ1 = 0.9 and γ2 = 0.999.

2Clearly ασ1 < 0 is possible; moreover, this is the case for NTRV: see [5,
Section 4.2]) as well as Fig. 2.

3We do not consider the case where σ0 > 0 and σ1 < 0 since such choice
would lead us to an algorithm similar to NTRV.

1247

For the SGD+M and NTRV we used a simple grid search,
which looked for the best learning rate α. For both cases we
fixed the momentum parameter to 0.9.

The stochastic-TS’s weight were selected heuristically, as a
result of a guided search based on the observations related to
(9) and (11). As a result we use:
• ρ

(k)
0 = min(ρ0 + (2.0− ρ) · (k/Lρ), 2.0), ρ(k)1 = 1− ρ(k)0 ,

• αk = cb
EPOCH
Lα
c · α,

• σ
(k)
0 = min(σ0 + (1.5− σ) · (k/Lσ), 1.5),

along with Lρ = 103, Lα = 20, Lσ = 104 for all the multi-
class architectures described next (Section IV-B).

B. Experiments on multiclass classification

To experimentally assess Algorithm 2, we focus on the
multi-class classification problem along with the CIFAR-10
dataset, which consists on 50K 32 × 32 color images for
training, divided into 10 classes, and 10K images for testing.
No data augmentation is considered, only the standard pre-
processing4. We consider 150 (AlexNet, VGG16) and 50 (Effi-
cientNetV2) epochs and the selected parameters are associated
with the best performance (test accuracy point of view).

1) AlexNet [18] : In Fig. 4 we compare the performance of
the TS (Algorithm 2) optimizer along with that of SGD+M,
SGD-NTRV and Adam. For completeness’ sake, for ADAM
we also report the ε = 10−8 and consider two learning rate
schedules (LR-sch): the initial LR is (i) multiplied by 0.1 after
100 epochs, or (ii) multiplied by 0.5 every 20 epochs; the latter
is the preferred LR-sch (see (10) and related comments) for TS
(Algorithm 2); for the same reason, SGD+M and SGD-NTRV
also take advantage of the same LR-sch.

0 20 40 60 80 100 120 140
epoch

0.00

0.01

0.02

0.03

0.04

0.05

lo
ss

Model loss
TF-SGD+M -- lr: 0.020, tim s 0.5 @ 20 pochs
TF-SGD-NTRV -- lr: 0.010, tim s 0.5 @ 20 pochs
TF-Adam (ε=10−3) -- lr: 0.002, tim s 0.1 @ 100 pochs
TF-Adam (ε=10−3) -- lr: 0.0015, tim s 0.5 @ 20 pochs
TF-Adam (ε=10−8) -- lr: 0.001, tim s 0.5 @ 20 pochs
Algorithm 2 (TS) -- l(: 0.025, tim) 0.5 @ 20 poch)

0 20 40 60 80 100 120 140
epoch

0.76

0.78

0.80

0.82

0.84

ac
cu

ra
cy

Model accuracy

Fig. 4: We compare the performance of Algorithm 2 with that
of SGD+M, SGD-NTRV and ADAM on AlexNet.

2) VGG16 [19]: Contrary to what was observed in Fig.
4, in Fig. 5, (i) ADAM along with the preferred LR-sch
(0.5b

EPOCH
20 c · α) gives better performance than Adam along

with the other LR-sch (not shown), and SGD-NTRV attains
better results than SGD+M (although not as good as ADAM).
Overall TS (Algorithm 2) is competitive with Adam, however
its loss evolution is far smoother than the former.

4As it is customary, the input images’ pixel are normalized between [0, 1]
and then force to be zero mean.

0 20 40 60 80 100 120 140
epoch

0.00

0.01

0.02

0.03

0.04

0.05

lo
ss

Model loss
TF-SGD+M -- lr: 0.020, tim s 0.5 @ 20 pochs
TF-SGD-NTRV -- lr: 0.020, tim s 0.5 @ 20 pochs
TF-Adam (ε=10−3) -- lr: 0.001, tim s 0.5 @ 20 pochs
TF-Adam (ε=10−8) -- lr: 0.001, tim s 0.5 @ 20 pochs
Algorithm 2 (TS) -- l(: 0.03, tim) 0.5 @ 20 poch)

0 20 40 60 80 100 120 140
epoch

0.76

0.78

0.80

0.82

0.84

0.86

ac
cu

ra
cy

Model accuracy

Fig. 5: We compare the performance of Algorithm 2 with that
of SGD+M, SGD-NTRV and ADAM on VGG16.

3) EfficientNetV2 [20]: For this case we used a partially
trained EfficientNetV2 as a staring point in order to be able to
attain competitive results when using CIFAR’s original image
size. It can be argued that the well-tuned ADAM optimizer
attains the best results, while TS and NTRV had a similar
performance but superior to SGD+M. The loss evolution (all
cases) is not as smooth as in the previous examples.

0 10 20 30 40 50
epoch

0.00

0.02

0.04

0.06

0.08

0.10

lo
ss

Model loss
TF-SGD+M -- lr: 0.020, tim s 0.5 @ 20 pochs
TF-SGD-NTRV -- lr: 0.020, tim s 0.5 @ 20 pochs
TF-Adam (ε=10−3) -- lr: 0.001, tim s 0.5 @ 20 pochs
TF-Adam (ε=10−8) -- lr: 0.001, tim s 0.5 @ 20 pochs
Algorithm 2 (TS) -- l(: 0.0225, tim) 0.5 @ 20 poch)

0 10 20 30 40 50
epoch

0.82

0.83

0.84

0.85

0.86

0.87

0.88

ac
cu

ra
cy

Model accuracy

Fig. 6: We compare the performance of Algorithm 2 with that
of SGD+M, SGD-NTRV and ADAM on EfficientNetV2.

V. CONCLUSIONS

Given that two SGD (stochastic gradient descent) variants,
namely SGD+momentum and SGD-Nesterov, can be inter-
preted as a particular instances of the stochastic counterpart
of a linear two-step (TS) integration method, in this paper we
have assessed the performance of such generic method.

Based on the lattice representation associated with the
interpretation of the stochastic TS (S-TS) method as a FIR
filter, we derive simple rules for the S-TS method’s parameters
such they differ from its well-established SGD variants.

Our reproducible experiments lead us to the conclusion
that the S-TS method has superior performance (multiclass
classification problem’s test accuracy) than its well-established
SGD variants. While a well-tuned ADAM optimizer attains a
slightly superior performance, the loss function’s evolution of
the S-TS method is, in general, smooth while ADAM’s tends
to exhibit an oscillatory behavior for all the considered cases.

1248

REFERENCES

[1] J. C. Butcher, Numerical Methods for Ordinary Differential Equations,
John Wiley & Sons, Ltd, 2016.

[2] L. Ambrosio, N. Gigli, and G. Savare, Gradient Flows in Metric Spaces
and in the Space of Probability Measures, Lectures in Mathematics ETH
Zürich. Birkhäuser, 2 edition.

[3] B. Polyak, “Some methods of speeding up the convergence of iteration
methods,” Ussr Computational Mathematics and Mathematical Physics,
vol. 4, pp. 1–17, 12 1964.

[4] Y. Nesterov, “A method of solving a convex programming problem with
convergence rate o(1/k)2,” Soviet Mathematics Doklady, vol. 27, no. 2,
pp. 372–376, 1983.

[5] D. Scieur, V. Roulet, F. Bach, and A. d'Aspremont, “Integration methods
and optimization algorithms,” in Advances in Neural Information
Processing Systems, 2017, vol. 30.

[6] D. Anderson, “Iterative procedures for nonlinear integral equations,” J.
ACM, vol. 12, no. 4, pp. 547–560, Oct. 1965.

[7] G. Hinton, N. Srivastava, and K. Swersky, “Neural networks for machine
learning lecture 6a overview of mini-batch gradient descent,” 2012.

[8] Matthew Zeiler, “Adadelta: An adaptive learning rate method,” vol.
https://arxiv.org/abs/1212.5701, 12 2012.

[9] D. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Int’l Conf. on Learning Representations (ICLR), 2015.

[10] S. Reddi, S. Kale, and S. Kumar, “On the convergence of adam and
beyond,” in International Conference on Learning Representations,
2018.

[11] L. Luo, Y. Xiong, and Y. Liu, “Adaptive gradient methods with dynamic
bound of learning rate,” in International Conference on Learning
Representations, 2019.

[12] J. Ma and D. Yarats, “Quasi-hyperbolic momentum and adam for deep
learning,” in Int’l Conf. on Learning Representations (ICLR), 2019.

[13] W. Yuan and K. Gao, “Eadam optimizer: How ε impact adam,” 2020.
[14] J. Zhuang, T. Tang, Y. Ding, S. C Tatikonda, N. Dvornek, X. Pa-

pademetris, and J. Duncan, “Adabelief optimizer: Adapting stepsizes
by the belief in observed gradients,” Adv. in neural information proc.
syst., vol. 33, pp. 18795–18806, 2020.

[15] S. Saab, S. Phoha, M. Zhu, and A. Ray, “An adaptive polyak heavy-ball
method,” Machine Learning, vol. 111, 07 2022.

[16] K. Tessera, S. Hooker, and B. Rosman, “Keep the gradients flowing:
Using gradient flow to study sparse network optimization,” 2021.

[17] Y. Liu, Y. Gao, and W. Yin, “An improved analysis of stochastic
gradient descent with momentum,” in Int’l Conf. on Neural Information
Processing Systems, Red Hook, NY, USA, 2020, Curran Associates Inc.

[18] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with
deep convolutional neural networks,” in NIPS, 2012, pp. 1097–1105.

[19] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in ICLR, 2015.

[20] M. Tan and Q. Le, “Efficientnetv2: Smaller models and faster training,”
in ICML, 2021, vol. 139, pp. 10096–10106.

[21] D. Choi, C. Shallue, Z. Nado, J. Lee, C. Maddison, and G. Dahl, “On
empirical comparisons of optimizers for deep learning,” 2019.

[22] P. Rodriguez, “Improving the stochastic gradient descent’s test accuracy
by manipulating the `∞ norm of its gradient approximation,” in IEEE
ICASSP, 2023, pp. 1–5.

[23] S. Ruder, “An overview of gradient descent optimization algorithms,”
CoRR, vol. abs/1609.04747, 2016.

[24] L. Luo, Y. Xiong, Y. Liu, and X. Sun, “Adaptive gradient methods
with dynamic bound of learning rate,” in Int’l Conf. on Learning
Representations, 2018.

[25] L. Bottou, “Online algorithms and stochastic approximations,” in Online
Learning and Neural Networks, David Saad, Ed. Cambridge University
Press, Cambridge, UK, 1998.

[26] L. Bottou, Stochastic Gradient Descent Tricks, pp. 421–436, Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[27] J. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods
for online learning and stochastic optimization,” Journal of Machine
Learning Research, vol. 12, pp. 2121–2159, 2011.

[28] M.H. Hayes, Statistical Digital Signal Processing and Modeling, Wiley,
1996.

[29] C. Darken and J. Moody, “Note on learning rate schedules for stochastic
optimization,” in Advances in Neural Information Processing Systems,
1990, vol. 3.

[30] F. Schneider, L. Balles, and P. Hennig, “Deepobs: A deep learning
optimizer benchmark suite,” in Int’l Conference on Learning Represen-
tations, 2019.

[31] M. Abadi, A. Agarwal, and et.al., “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015, https://www.tensorflow.org/.

[32] P. Rodriguez, “Simulations for SGD variants,” https://hands-on-sgd.
readthedocs.io/en/latest/sims.

[33] P. Savarese, D. McAllester, S. Babu, and M. Maire, “Domain-
independent dominance of adaptive methods,” in IEEE CVPR, June
2021, pp. 16286–16295.

1249

