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Abstract—Model compression techniques reduce the computa-
tional load and memory consumption of deep neural networks.
After the compression operation, e.g. parameter pruning, the
model is normally fine-tuned on the original training dataset
to recover from the performance drop caused by compression.
However, the training data is not always available due to
privacy issues or other factors. In this work, we present a data-
free fine-tuning approach for pruning the backbone of deep
neural networks. In particular, the pruned network backbone
is trained with synthetically generated images, and our proposed
intermediate supervision to mimic the unpruned backbone’s
output feature map. Afterwards, the pruned backbone can be
combined with the original network head to make predictions.
We generate synthetic images by back-propagating gradients
to noise images while relying on L1-pruning for the backbone
pruning. In our experiments, we show that our approach is task-
independent due to pruning only the backbone. By evaluating
our approach on 2D human pose estimation, object detection,
and image classification, we demonstrate promising performance
compared to the unpruned model. Our code is available at
https://github.com/holzbock/dfbf.

Index Terms—Data-Free Neural Network Pruning, Data-Free
Object Detection Pruning, Data-Free Pose Estimation Pruning

I. INTRODUCTION

Computer vision tasks like object detection [1], [2] or
human pose estimation [3], [4] have long been studied in the
literature. Their leading performance though comes at the cost
of high computational and memory requirements, making them
difficult to deploy on resource-constrained devices. For deep
neural networks, the compute and memory demands are often
reduced with model compression, e.g. parameter pruning [5]
or knowledge distillation [6]. However, most neural network
compression techniques normally require the availability of the
training set. Due to privacy issues or large dataset size, access
to the training dataset cannot always be guaranteed.

As an alternative to the data-driven model compression [5]–
[7], approaches using only a few samples of the training
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Fig. 1. Training of the pruned backbone with label-free synthetic images.
Besides the backbone’s output feature map, some intermediate feature maps
are used to recover the backbone’s knowledge.

dataset [8] and data-free methods have been developed to
overcome the limited access to the original training dataset.
The data-free approaches generate synthetic images to regain
the knowledge after pruning [9] or transfer the knowledge with
knowledge distillation [10] to a smaller model. The synthetic
images can be generated with an additional generator network
trained with the original model’s knowledge [9], [11]. Another
method is to optimize noisy images by back-propagating
directly onto the pixels [12]. In this work, we focus on neural
network pruning similar to [9]. However, we rely on the
back-propagation of gradients for image generation instead
of employing a generator network. In contrast to existing
methods, our approach is not limited to a specific task, but
is applicable to different computer vision tasks. We achieve
task-independence by only pruning the backbone of the model,
keeping the task-dependent head unchanged.

We present a Data-Free Backbone Fine-tuning approach
(DFBF) for pruning the backbone of deep neural networks.
In particular, we train the pruned backbone with synthetic
images to mimic the output of the unpruned backbone. Later,
we can use the pruned backbone with the original network
head to make predictions. The synthetic images are generated
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by back-propagating gradients directly on noise images, while
the backbone is pruned by ℓ1-pruning, leaving the parameters
of the network head unmodified. Only backbone pruning
keeps the pruning approach task-independent, as no training
of the task-specific head is required. For the training of the
backbone, we introduce an intermediate loss function that
adjusts the pruned backbone’s intermediate feature maps and
output to match it with the original backbone. An overview of
the proposed method is given in Fig. 1. After the training,
the original network’s head can be attached to the pruned
backbone for the task-specific output.

We examine our approach on three vision tasks, namely
object detection, human pose estimation, and image classifi-
cation. First, we use the Faster R-CNN object detector [1] for
object detection and present the results for different pruning
ratios on the COCO detection dataset [13] and Pascal VOC
dataset [14]. We evaluate pose estimation with the OpenPifPaf
pose estimator [3] trained on the COCO keypoint dataset [13].
Additionally, we compare the performance on CIFAR10 [15]
for image classification. As backbone, we use ResNet [16]
and VGG [17] models in our experiments. To the best of our
knowledge, we are the first to introduce a data-free fine-tuning
method for pruning that can be applied to complex computer
vision tasks like object detection and human pose estimation.
The proposed intermediate loss function that applies the pre-
diction of the unpruned model as ground truth enables the task
independence of DFBF.

II. METHOD

In the following, we present our data-free fine-tuning
method for pruned neural networks, which process input
images x ∈ R3×W×H , where W and H are the width
and height, respectively. We assume that the neural network
y = f(x; θ) can be divided into a backbone z = b(x; θb) and a
head y = h(z; θh), where the head h is a task-specific output
network. y is the output prediction, z is the output feature map
from the backbone forwarded to the task-specific head, while
θ, θb, and θh are the model parameters of the whole model,
the backbone, and the head, respectively. Since we only prune
the model backbone, our approach is independent of the shape
of the model prediction y and thus can be applied to different
computer vision tasks.

A. Preliminaries

Pruning: Utilizing pruning algorithms reduces neural
networks’ resource demand by removing unnecessary or re-
dundant parameters. Pruning convolutional neural networks
can be divided into different groups. The parameter pruning
only removes single weights [18], leading to sparse kernels
and no satisfying reduction in computation. In contrast, filter
pruning reduces the computation effort by removing entire
filters [19]. To decide which filters are pruned, the methods
rely on the knowledge of the model, like in ℓ1-pruning [20]
and Batch Normalization pruning [21], or even use additional
neural network layers [22]. Because of its simplicity and the
fact that no extra neural network layers are needed, we rely on

the ℓ1-pruning [20] to get the pruned backbone bp(·) with its
reduced parameters θbp. However, every other filter pruning
approach can be used to prune the model’s backbone for
DFBF. The ℓ1-pruning calculates for each filter Fi of a neural
network layer the sum of the filter weights wi by si =

∑
|wi|

and removes filters with the smallest sum si according to the
required sparsity. The reduction of the current layer’s filters
makes it necessary to remove the corresponding input channels
of the following layer. Furthermore, the pruning sparsity can
be adapted to the number of filters in the layer, i.e. in layers
with many filters, percentual more filters are pruned than in
layers with fewer filters.

Image Synthesis: Since the original training set is un-
available, we synthesize training images by transferring knowl-
edge from the model to a noisy image, similar to DeepIn-
version [23], but without being limited to the classification
task. At the beginning of the image generation, a noise image
x̂ ∈ R3×w×h with width w and height h is fed into the
backbone, while the synthetic image size can differ from the
original (W ̸= w;H ̸= h). Then, the loss Limage is propa-
gated back onto the noise image x̂ to adapt the pixels directly
without changing the model parameters. The loss Limage for
optimizing the noise image independent of the underlying task
is the weighted sum of the following three parts. The Batch
Normalization loss is calculated between the batch statistics of
the Batch Normalization layers and the statistics of the actual
noise images. The total variance loss is defined by the ℓ2-
norm of the differences between horizontally and vertically
adjacent image pixels and is calculated on the noise image
directly. Additionally, the loss is regularized by penalizing
the ℓ2-norm of the entire image. The task independence of
Limage is reached by not using the task-specific outputs of
the head, whereby images of different computer vision tasks
can be synthesized. To train the pruned model, we generate a
synthetic dataset D containing M synthetic images x̂.

B. Overall Pruning Procedure

Our method is designed for pruning a neural network of
any image-dependent task in a data-free manner. Our main
contribution is the fine-tuning step after the pruning without
relying on training data. Therefore, we focus on reducing
the size of the backbone b(·) and keeping the head h(·) as
is. We perform the task-independent data-free pruning in the
following three steps: 1) image generation with an adapted loss
function, 2) network pruning with the ℓ1-pruning, and 3) fine-
tuning only the backbone with the proposed intermediate loss
function. A systematic overview of the data-free fine-tuning
of the backbone is given in Fig.1.

C. Data-Free Training

During the pruning process, the model loses some of its
knowledge which can be recovered in the following training
procedure. In data-driven pruning methods, fine-tuning is per-
formed with the original training dataset. In contrast, we use
the synthetic dataset D, which only contains pseudo images
x̂, but no labels. However, the loss calculation in the standard
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training with the original data needs labels for the parameter
update. To overcome the issue of having no ground truth labels
for the pseudo images, we introduce a method that generates
pseudo labels with the help of the unpruned model and applies
them to improve the performance of the pruned model.

The final output of a neural network depends on the defined
model task. Therefore, we propose not handling the output
of the unpruned network’s head as pseudo ground truth but
instead using the output feature map z of the unpruned model’s
backbone. This design choice makes our approach independent
of the task-specific model heads. More precisely, we define
the loss as the ℓ1-loss between the output feature map of the
unpruned backbone z and the pruned backbone ẑ. Our output
feature map loss Lout can be formulated as

Lout =
1

wo ∗ ho

wo∑
i=0

ho∑
j=0

|ẑi,j − zi,j |, (1)

where wo and ho are the width and height of the output
feature map, respectively.

Additionally, we define an intermediate feature map loss
Linter. For Linter, we calculate the ℓ1-loss between interme-
diate feature maps of the unpruned model an, n ∈ [1 . . . N ]
and the corresponding feature maps of the pruned model
ân, n ∈ [1 . . . N ], where N defines the number of intermediate
feature maps. Empirically, we found that the intermediate
feature maps after the Batch Normalization layers [24] lead
to the best results. Since the feature maps behind the pruned
layers differ in their dimensions from the unpruned model
ones, it is impossible to calculate the loss between them.
Therefore, we propose to skip single layers in the pruning and
use them later for the loss calculation. Using N intermediate
feature maps for the loss calculation, Linter can be calculated
as

Linter =

N∑
n=1

(
µn

wn ∗ hn

wn∑
i=0

hn∑
j=0

|ân,i,j − an,i,j |
)
. (2)

The influence of the different feature maps on the loss Linter

is defined by the parameter µn, which we define as n
N+1∗γ+1,

where the parameter γ is a scaling factor. wn and hn are the
width and height of the intermediate feature map n.

The overall loss LDFBF in our data-free training combines
Lout and Linter:

LDFBF = µoutLout + Linter, (3)

where µout is the weighting factor of the output loss that we
define as γ + 1. Importantly, LDFBF is applied to optimize
the parameters θbp of the pruned backbone bp(·) and not to
update the parameters θh of the head h(·).

During inference, we combine the optimized pruned back-
bone ẑ = bp(x, θbp) with the pre-trained head ŷ = h(ẑ, θh)
to obtain the pruned model as:

ŷ = h(bp(x, θbp), θh). (4)

For the prediction, we feed original images x to the model and
get a slightly different model output ŷ because of the modified

Fig. 2. Synthetic images generated with Faster R-CNN object detector [1]
with a ResNet50 [16] backbone trained on the COCO detection dataset [13].

Fig. 3. Synthetic images generated with an OpenPifPaf pose estimator [3]
with a ResNet50 [16] backbone trained on the COCO keypoint dataset [13].

backbone weights θp. Due to the backbone training with the
synthetic images, the output of the original model y and the
pruned model ŷ are nearly identical.

III. EXPERIMENTS

We show the effectiveness of our proposed method in three
challenging computer vision tasks: object detection, human
pose estimation, and image classification. In object detection,
we use Faster R-CNN [1] trained on the COCO detection [13]
as well as on the Pascal VOC dataset [14]. The base for the
human pose estimation is an Open PifPaf pose estimator [3]
trained on the COCO keypoint dataset [13]. Both tasks utilize
a ResNet50 [16] backbone, and VGG16 [17] is used as an
additional backbone in object detection. We prune between
10% and 40% of the backbone filters with ℓ1-pruning during
the evaluation. In image classification, we compare with Tang
et al. [9] and follow their evaluation protocol using Batch
Normalization pruning [21] for the VGG models [17] and ℓ1
pruning [20] for the ResNet models [16]. The pruned backbone
is trained in each task with 1600 synthetic images using the
SGD optimizer with a learning rate of 0.01, a momentum of
0.9, and a weight decay of 5× 10−4.

To the best of our knowledge, we are the first to prune an
object detection or a human pose estimation model in a data-
free manner. Therefore, we cannot make a direct comparison
with other methods. We compare DFBF with the unpruned
baseline referred to as Baseline, the pruned but not fine-tuned
model referred to as w/o fine-tuning, and the pruned model
trained with 1600 random sampled original training images
and our intermediate loss LDFBF referred to as orig. img.
Additionally, we report the number of removed filters and
parameters, while the parameter count differs from the filter
count because of different pruning sparsities in separate layers.
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TABLE I
RESULTS OF DFBF FOR OBJECT DETECTION WHEN PRUNING FASTER R-CNN [1] WITH RESNET50 [16] AND VGG16 [17] BACKBONE TRAINED ON

COCO DETECTION [13] AND PASCAL VOC [14]. OPENPIFPAF [3] WITH A RESNET50 [16] BACKBONE TRAINED ON COCO KEYPOINTS [13] FOR POSE
ESTIMATION. w/o fine-tuning: WITHOUT FINE-TUNING AFTER PRUNING; orig. img: ORIGINAL IMAGES AND LDFBF LOSS.

Method Removed
Params in %

Removed
Filters in %

COCO detection
mAP0.5:0.95 in %

COCO detection
mAP0.5:0.95 in %

VOC
mAP0.5 in %

COCO keypoints
AP in %

Backbone ResNet50/
VGG16

ResNet50/
VGG16 ResNet50 VGG16 ResNet50 ResNet50

Baseline 0/0 0 37.4 23.0 78.1 68.1

w/o fine-tuning 14/16 10 34.0 19.4 74.7 57.9
orig. img 14/16 10 35.8 21.3 77.7 63.3
DFBF 14/16 10 36.2 20.9 77.6 65.2

w/o fine-tuning 28/32 20 24.6 11.6 60.3 36.1
orig. img 28/32 20 36.3 20.0 77.4 60.2
DFBF 28/32 20 33.4 18.8 75.1 62.2

w/o fine-tuning 40/46 30 13.8 5.3 36.9 20.4
orig. img 40/46 30 35.3 18.1 76.0 55.5
DFBF 40/46 30 28.0 15.2 71.5 55.5

w/o fine-tuning 52/59 40 4.6 2.2 20.7 4.6
orig. img 52/59 40 33.1 14.1 74.0 48.8
DFBF 52/59 40 19.1 10.7 63.2 49.1

A. Object Detection

We set the synthetic image resolution for the object de-
tection task to 250 × 250 pixels and γ to 1. The results
for pruning a Faster R-CNN object detection model [1] in
a data-free manner are shown in Tab. I. For both datasets
and backbones, the performance evolves similarly during
pruning and training. The performance of the object detector
after pruning depends on the pruning sparsity and decreases
with higher rates. Also, we can see that with DFBF, the
performance of the pruned model can recover during training
with the synthetic images near the initial results. The model’s
performance trained with synthetic images is behind the model
trained with the original images. Furthermore, the influence of
synthetic images at higher pruning rates (30% and 40%) can
be seen. Here, the difference between the model trained with
the synthetic and the original images increases compared to
lower pruning rates (10% and 20%). We show some synthetic
images generated from an object detector trained on the COCO
detection dataset [13] in Fig. 2. Compared to the original
images, no objects can be recognized in the synthetic images.
The abstract look of the synthetic images can cause the
performance gap between the synthetic and original training
image’s performance using high pruning sparsities.

B. Human Pose Estimation

Besides object detection, we evaluate DFBF for human pose
estimation which is often the base for gesture recognition [25]
or human motion prediction [26]. We use synthetic images
with a resolution of 160 × 160 and 6 as value for γ. The
results for the human pose estimation are shown in Tab. I. As
for object detection, the performance decreases with a higher

pruning rate in human pose estimation. For all pruning rates,
DFBF can recover the performance after pruning. In contrast to
object detection, we perform better on human pose estimation
with the synthetic images than with the original training im-
ages. This could be due to the difference between the synthetic
images obtained from both tasks. Synthetic images generated
with OpenPifPaf trained on the COCO keypoint dataset can
be seen in Fig. 3. Compared to the images generated in the
object detection task in Fig. 2, the pose images show pose
information and pose-related details such as faces. Therefore,
the generated images’ variation can be broader compared to
the original images. Moreover, the synthetic images show only
patterns important for human pose estimation, and the pruned
model can concentrate on learning the essential shapes.

C. Image Classification

Unlike the other tasks, we compare image classification
with the state-of-the-art approach from Tang et al. [9]. During
pruning the image classification model, the resolution of the
synthetic training images is 32× 32, and we set the factor γ
to 0. Tab. II presents the CIFAR10 [15] results for different
ResNet and VGG models fine-tuned with DFBF and the
approach of Tang et al. [9]. In the pruning, we remove 30%
and 50% of the filters from the baseline models. The results
show that our approach is on par with Tang et al. [9], while we
are not limited to the classification task due to the proposed
task-agnostic loss function.

IV. ABLATION STUDIES

An essential part of DFBF is the proposed intermediate loss
function LDFBF for which we do further investigations. We
use the OpenPifPaf settings from Sec. III as standard settings.
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TABLE II
COMPARISON OF OUR METHOD WITH TANG ET AL. [9] ON THE

CIFAR10 [15] DATASET WITH VGG16/19 [17] AND RESNET18/34 [16].
MODEL ACCURACY AND REMOVED (RM) FILTERS ARE GIVEN IN %.

Method RM
Filters

VGG
16

VGG
19

ResNet
18

ResNet
34

Baseline 0 94.00 93.95 93.07 93.33

DFBF 30 92.85 92.85 92.66 92.92
Tang et al. 30 92.78 92.82 - -

DFBF 50 92.07 92.14 92.48 92.60
Tang et al. 50 92.43 92.78 92.68 93.25

TABLE III
RESULTS OF DIFFERENT SCALING FACTORS γ IN LDFBF .

γ 2 3 4 5 6 7 8
AP 60.0 60.8 61.4 61.8 62.2 62.4 62.6

In LDFBF , we take the feature map after each residual
connection and the output feature map to calculate the loss
and get an overall performance of 62.2%. The performance
drops by 1.0% AP to 61.2% AP when skipping every second
intermediate feature map in the loss calculation. Neglecting all
intermediate feature maps and using only the output feature
map in the loss calculation decreases the performance to
44.7% AP. These experiments demonstrate the importance of
the intermediate feature maps on LDFBF . Furthermore, we
present the effect of the scaling factor γ in Tab. III. We vary
the impact of the different feature maps on LDFBF by setting
γ ∈ [2, . . . , 8]. With increasing γ, the overall performance
improves.

V. CONCLUSION

We presented a data-free backbone fine-tuning approach for
pruning the backbone of deep neural networks. Our approach
relies on synthetically generated images to fine-tune the back-
bone of the pruned neural network, where pruning is based
on the ℓ1 norm. Notably, we proposed an intermediate loss
function to match the pruned backbone’s output feature map
such that the pruned backbone can later be combined with the
original network head to perform predictions. Our evaluations
showed that our approach is task-independent by evaluating
the tasks of object detection, human pose estimation, and
image classification.
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