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1name.surname@imt-atlantique.fr, 2name.surname@sony.com

Abstract—The estimation of the generalization error of clas-
sifiers often relies on a validation set. Such a set is hardly
available in few-shot learning scenarios, a highly disregarded
shortcoming in the field. In these scenarios, it is common to rely
on features extracted from pre-trained neural networks combined
with distance-based classifiers such as nearest class mean. In this
work, we introduce a Gaussian model of the feature distribution.
By estimating the parameters of this model, we are able to predict
the generalization error on new classification tasks with few
samples. We observe that accurate distance estimates between
class-conditional densities are the key to accurate estimates of the
generalization performance. Therefore, we propose an unbiased
estimator for these distances and integrate it in our numerical
analysis. We empirically show that our approach outperforms
alternatives such as the leave-one-out cross-validation strategy.

Index Terms—few-shot learning, classification, deep learning,
generalization

I. INTRODUCTION

The problem of few-shot classification, where the number
of training samples per class is small (typically less than
ten [1]), has known a large number of contributions [2],
[3]. Most of current state-of-the-art solutions consist in using
a pre-trained deep feature extractor to embed samples in
a feature space where classes are expected to be easier to
discriminate, followed by a distance-based classifier such as
the nearest-class mean (NCM) [4], [5]. However, measuring
the performance of such classifier in the few-shot scenario
is not straightforward. The classical approach is to perform a
leave-one-out cross-validation, where one sample is arbitrarily
removed from the training set to be used as a validation probe,
this process being repeated a large number of times to obtain
as average the expected accuracy [6].

Finding an alternative to cross-validation has been exten-
sively studied in the literature for standard classification set-
tings where a large number of training samples is available [7].
In this work, we are mainly interested in proposing an alter-
native to cross-validation and to existing generalization pre-
diction methods in the context of few-shot classification. The
proposed method uses a statistical model of class-conditional
densities in the feature space to estimate the probability of
error, as represented in Figure 1.
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Fig. 1: The classical few-shot pipeline uses a pre-trained
feature extractor to embed data x into features z = fθ(x)
followed by a classifier. Our approach models the class-
densities of the features as Gaussian distributions in a lower
dimensional subspace and predicts the probability error P̂e of
the classifier, either analytically or by sampling.

There are two key difficulties here: 1) We need to find a
model that is expressive enough to capture the data distribution
while depending on as few parameters as possible to accurately
estimate them in the very low data regime. 2) Our derived
expression for the probability of error depends on the distances
between class centers. We observe that the naive estimate
for the distances is biased, which leads to underestimating
the probability of error especially when working in high-
dimensional spaces with very few samples.

The main contributions1 of our work are as follows:

• We introduce a statistical model of class-conditional
densities in the feature space and propose an unbiased
estimator for the distances between class centers;

• We demonstrate that our method outperforms other
model-free generalization error predictors on standardized
few-shot classification benchmarks.

1Our code is available at: https://github.com/ybendou/fs-generalization.
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II. RELATED WORK

A. Classification in few-shot learning

In this paper, we refer to P for probabilities and p for prob-
ability density functions. We formalize few-shot classification
as follows:

Definition 1 (Few-shot classification). Let
DB = {(x′

i, y
′
i)}mi=1 be a large base dataset where

∀i, (x′
i, y

′
i) are i.i.d samples drawn from the true joint

probability distribution pXB ,YB
and ∀i, y′i ∈ YB is the

class associated with x′
i. We are also given a small few-shot

training dataset D = {(xj , yj)}ℓj=1, where ∀j, yj ∈ Y ≠ YB

and ∀j, (xj , yj) ∼ pX ,Y .
The goal of few-shot classification is to train a classifier C

using D, with the potential help of DB .

Since there are few training samples in few-shot classifi-
cation tasks, it is not feasible to train a deep neural network
architecture with a large number of parameters. Most methods
consist in pre-training a deep feature extractor fθ with parame-
ter set θ using DB . This feature extractor is then either adapted
or used as it is on D to produce feature vectors z = fθ(x) in
an Euclidean space. The few-shot classifier then works with
the modified training dataset fθ(D) = {(zj , yj)}ℓj=1.

There are multiple strategies on how to train fθ that can
roughly be classified as optimization-based approaches and
distance metric approaches.

Optimization-based methods aim to effectively adapt fθ
to new few-shot tasks. Meta-learning has been a popular
method especially with the introduction of MAML [8] and
its variants [9]. On the other hand, distance-based approaches
aim to learn a good feature extractor [10].

In the distance-based category, the feature extractor can
be trained in two different ways. The first one relies on
episodic training where the idea is to reproduce the same
conditions of the few-shot adaptation phase during the pre-
training of the feature extractor [11]. The second way to train
a feature extractor is to use a standard cross-entropy loss.
This is usually referred to as transfer learning, which has
been successful in recent years and largely adopted due to its
competitive performance compared to episodic training, while
being relatively simple to implement [4], [5].

Various few-shot classifiers have been proposed in the liter-
ature such as fine tuning a multi-layer perceptron with a cross-
entropy loss [10], which has been criticized for being biased in
few-shot regimes [12]. Other distance-based approaches such
as using a nearest class mean (NCM) classifier [5] or an earth
distance metric using optimal transport [13] have also been
studied. We adhere to the NCM approach due to its well
established performance and its simplicity.

Definition 2 (Nearest class mean classifier). A nearest class
mean classifier CNCM is the optimal classifier when class-
conditional densities follow a Gaussian distribution with equal
isotropic covariance and uniform prior across classes [14]:

p(z | y = c) = N (z | µc, σ
2I) , (1)

where µc is the center of class c ∈ Y , σ is the standard
deviation and I the identity matrix. The classification of a
new sample z is performed according to:

CNCM(z) = argmin
c∈Y

∥z− µc∥2 . (2)

In practice we estimate the class centers from the training data
D using the empirical average of each class.

Once the class centers are estimated, there are a maximum
of (n− 1) dimensions of interest in the considered Euclidean
space, which correspond to directions between class centers,
where n is the cardinal of Y . Remaining ones can be dis-
regarded, as they produce contributions that are orthogonal
to the axes between class centers. Projecting the data onto
this lower dimensional subspace is preferable in few-shot
classification as it allows to work with lower dimensions [15].
Such a projection can be performed using for example a
QR decomposition [16] to reduce data dimension. Indeed, as
shown in [15], a subspace of dimension (n−1) does not impact
the boundary decisions of a NCM classifier.

B. Predicting Generalization
Predicting generalization is one of the most important topics

in machine learning. It was brought into focus by [17], who
asked the question of how one can measure the generalization
from training data, showing that neural networks can easily
fit randomly labeled data with high accuracy but with low
generalization capabilities.

Many works have been proposed on generalization of
neural networks trained on large training datasets such as
ImageNet [18]. The proposed methods in the literature can
be summarized into few different families. The first one is
PAC-Bayes methods where the generalization behavior of a
model is described by probably approximately correct (PAC)
bounds [19]; these methods often provide an upper-bound on
the generalization error and the results are often restricted
to a small set of models (e.g., no depth variations). The
second family is norm-based methods, which analyzes the
neural network weights. These methods have shown to perform
poorly [7]. The last family of methods aims to analyze the
intermediate representation of the training data in the feature
space such as using the Davies-Bouldin Index [20] which is
a clustering measure of the training data. Note that the main
focus of these methods is to predict the generalization of a
model trained for a certain task where large training data is
available. Predicting generalization when working with few
labeled samples has mainly been addressed when using meta-
learning methods [21], [22]. The closest work to ours is [23],
where some of the strategies for predicting generalization
mentioned before have been tested for few-shot classification
using transfer learning.

Differently to previously mentioned works, in this paper
we aim at deriving a statistical model of the class-conditional
densities in the feature space and to use this model to esti-
mate the generalization error. As we will demonstrate in the
experiments, the proposed methodology can outperform the
previously mentioned ones in few-shot settings.
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III. METHODOLOGY

A. Statistical model

The first step of our proposed methodology consists in
proposing a statistical model for class-conditional densities in
the feature space. Let us assume that each class follows a
Gaussian distribution with a uniform prior across the classes,
i.e, p(yz = c) = 1

n ,∀c ∈ Y , where n is the cardinal of Y ,
which is reasonable to assume in a few-shot setting [15]. The
conditional densities are defined as:

p(z | y = c) = N (z | µc,Σc) , (3)

where Σc is the covariance matrix of class c.
Our hypothesis stands from the fact that given a well pre-

trained feature extractor, each class in the feature space should
follow a multivariate Gaussian distribution centered around a
class center. This assumption has been largely adopted in the
few-shot literature [24]–[27]. Furthermore, the performance
we obtain through our experimental results in Section IV show
that this model fits our data.

Predicting generalization can be defined as predict-
ing the probability of error from the classifier C. Let
Rc = {z | C(z) = c} be the decision region for class c
using the classifier C and R = ∪c∈Y Rc. The theoretical
error of our problem is defined by the sum of integrals:

Pe =
∑
c∈Y

∫
R∖Rc

p(z | y = c)p(y = c) dz . (4)

B. Analytical insight

A closed form solution of Equation 4 when n > 2 is often
intractable. In this section we focus on the case of binary
classification and derive an analytical expression for Pe.

For the case of a binary classifier of isotropic Gaussian data
with equal standard deviation σ and class centers µa and µb,
Pe has a closed form which only depends on the distance
between the class centers r = ∥µa − µb∥2 and σ:

Pe = 1− ϕ
( r

2σ

)
, (5)

where ϕ is the cumulative distribution function of N (0, 1).
To estimate Pe, we typically estimate r and σ using i.i.d

samples such that r̂ = ∥µ̂a − µ̂b∥2, where µ̂ is the empirical
mean estimate. Under this analytical form, we can derive a
statistical bound for P̂e = 1 − ϕ

(
r̂
2σ̂

)
and prove that this

bound is of O( 1√
k
). More details on this statistical bound can

be found in the long version of this paper [28].
Estimating the probability error depends on estimating the

distance between class centers. The naive approach for esti-
mating distances is usually performed by estimating the means
of each distribution using the empirical mean estimate and
computing r̂ = ∥µ̂a − µ̂b∥2 to which we refer to as the naive
estimator. However, this estimation of the distance between
the class centers is biased.

Lemma 1. Let (a1,a2, · · · ,ak) and (b1, b2, · · · , bk) be two
sequences of i.i.d random variables drawn from their respec-
tive multivariate probability distributions pa and pb assumed

independent with finite expected values µa and µb and fi-
nite second order moment with covariance matrices Σa and
Σb. Let r̂ be the naive estimator for the distances using
µ̂a = 1

k

∑k
i=1 ai and µ̂b = 1

k

∑k
i=1 bi the mean estimator

of each of the two sequences, then:

Ea∼pa
b∼pb

(
r̂2
)
− r2 =

Tr(Σa +Σb)

k
. (6)

The bias is a function of the noise and the number of sam-
ples k. Our numerical approach includes a bias reduction step.
The correction is performed in the original high dimensional
space. The proof of Lemma 1 as well as experiments to show
the extent of this bias are included in the long version of this
paper [28]. We also provide experiments with and without the
bias correction to demonstrate its importance.

C. Numerical insight

Computing Pe analytically in equation 4 for n > 2 is
hard. In practice we can approximate Pe using a Monte Carlo
method. For each class, we draw a large number of data points
from Gaussian distributions fitted to the few-shot training
dataset to artificially enrich it and compute the classifier’s
decisions on a virtual validation set. We sample in the reduced
subspace with (n− 1) dimensions.

We take into account the positively biased distances be-
tween class centers which lead to underestimated Pe (as
demonstrated in long version of this paper [28]). Correcting
this bias is key to accurately estimating Pe. In fact, for a
distance-based classifier, the absolute positioning of the class
centers do not affect its decisions. In order to perform the
sampling, we generate a set of points which respect the new
estimated distances using the Nonmetric Multidimensional
Scaling algorithm (MDS) [29].

Estimating Pe by sampling means that there are no restric-
tions for choosing the covariance of the data. In section IV
we compare the performance for different covariance matrices
and run an experiment to validate our choice, i.e.: 1) using the
identity matrix, 2) using a shared isotropic covariance matrix
across classes, 3) using isotropic covariance matrix per class,
4) using the full covariance matrix per class.

IV. EXPERIMENTS

A. Datasets and implementation details

We use two standardized few-shot vision classification
benchmarks: Tiered-ImageNet [30] and Meta-dataset [31] (inc.
ImageNet and VGG-Flower). We sample 103 problems from
each dataset which contains at least 500 samples per class. We
pre-train a 512-dimensional ResNet-18 architecture using the
standard procedure from [4]. Details can be found in the long
version of this paper [28].

B. Estimating the first and second order moments

We conduct a first experiment to determine the best type of
covariance matrix for our Gaussian model. Namely, we can
choose a simple identity covariance matrix, a shared isotropic
model with a scaling parameter σ, an isotropic model with
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each class having its own scale, or a completely free model.
We generate 103 5-class few-shot problems and measure the
average Kullback-Leibler (KL) divergence between the ob-
tained covariance matrices and the ground-truth one obtained
with a large number of labelled samples from the same classes.
Figure 2 shows a trade-off between model complexity and
overfitting. For more samples, the free model with more
parameters performs better, while for fewer samples it is better
to use a shared isotropic model. That is why in our next
experiments, we use a shared isotropic covariance matrix for
k ≤ (n−1)2 (intersection between model 2 and 4 in Figure 2),
and a completely free model otherwise.
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Fig. 2: Average KL divergence between a Gaussian distribution
fitted with a limited number of samples and the closest
Gaussian approximation using a larger number of samples.

C. Performance in predicting generalization

Next we compare our method to leave-one-out cross-
validation and to the Davies-Bouldin (DB) Index, a clustering
measure of inner-class and outer-class variances. For a fair
comparison, we use the validation split of the original datasets
to train a linear regression for the DB Index method and apply
it to the few-shot tasks. For the cross-domain datasets, we use
the validation split of ImageNet. For each few-shot problem,
we predict the accuracy (1− P̂e) and compare it to the actual
one. We use the Mean Absolute Percentage Error (MAPE)
averaged over 103 problems as a metric. Our method (Ours
unbiased) in Figure 3 outperforms cross-validation when few
labeled samples are available, and outperforms the DB Index
method on all datasets. Our method is also more efficient in
predicting generalization and its predictions are more aligned
with ground truth accuracies as shown in the scatter plot in
Figure 4 for few-shot problems from ImageNet. Moreover,
our method without the bias correction (Ours biased) does not
yield good results, demonstrating the importance of the bias
correction step.

V. DISCUSSION AND LIMITATIONS

A first observation is that the DB Index performs poorly
and tends to collapse on cross-domain datasets. We believe
this is due to the large domain gap, causing a mismatch in the
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Fig. 3: Mean-Absolute-Percentage Error of different general-
ization predictors against the number of samples using 103

5-class few-shot classification problems. Figure (a) is an in-
domain setting. Figure (b) is cross-domain. We compare our
method (unbiased) to cross-validation or DB Index.
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Fig. 4: Scatter plot of 5-class few-shot problems with 10
samples per class from ImageNet. Each point represents a
different problem with a true ground-truth accuracy plotted
against the predicted accuracy from the different methods.

learned parameters of the linear regression. We can observe
this behaviour in Figure 4 where the DB Index predictions
are misaligned with the ground-truth accuracies. A linear
regression was found to have the best results among various
learned functions while our method and the cross-validation
do not suffer from this behaviour.

Furthermore, when predicting generalization with limited

1263



samples, existing techniques, except for cross-validation, rely
on clustering measures which depend on computing the dis-
tances between class centers and could benefit from the
bias correction step when working with few samples. Other
methods based on the analysis of the function space defined
by the network [32] or its gradients [33] require training the
network on the task which needs a large number of samples.
For binary classification, our method is similar to the DB
Index with a Gaussian kernel, but for multi-class classification,
our method has the advantage of estimating class-conditional
densities for computing the overlap between the classes.

Predicting error depends on the accuracy of the few-shot
problem. Hard few-shot problems have a low SNR making
the estimation of accuracy more difficult. On the other hand,
good separation between the classes in the latent space leads
to a better estimation of generalization. This explains the per-
formance gap between in-domain and cross-domain datasets.

VI. CONCLUSION

This article proposes a model-based approach to esti-
mate the generalization capability of few-shot classifiers. Our
method outperforms the leave-one-out cross-validation and
the Davis-Bouldin score-based estimator for different few-shot
tasks with small number of labeled samples. This is especially
important in the few-shot context. Our method strongly relies
on unbiased estimates of the inter-class distances, which is
a key contribution of this paper. Note that our method can
be generalized to transfer-based few-shot learners with any
distance-based classifier. Although we improve upon existing
methods, we think that it opens up interesting new directions
for further research.
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