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Abstract—For classification tasks, deep neural networks seek
to minimize the average risk of classification error during the
training step. When some classes are more difficult to recognize,
the class-conditional classification probabilities, also called the
recalls, of the neural network classifier are generally very unequal
in many real world applications. This paper proposes a multiclass
minimax approach for equalizing the recalls of a deep neural
network. Our approach replaces the top layer of the neural
network by a specific discrete minimax decision rule. This novel
top layer is based on a K-means partitionning of its input deep
features to train a minimax Bayes classifier that can fit any
input statistical distribution. The learning process, based on a
subgradient optimization algorithm, is scalable when the number
of classes is large. Numerical experiments compare our approach
to several state-of-the-art algorithms on medical images and
CIFAR-100 database.

Index Terms—Deep Neural Network, Minimax Learning, Mul-
ticlass Recall Equalization, Scalability.

I. INTRODUCTION

Deep Neural Networks (DNNs) become unavoidable for
classifying signals and images [1], [2] as they generally
allow to achieve high classification performance. Deep neural
networks offer a powerful representation mechanism. They
produce features that contain useful information about the
classification task they adress. But the control of classification
errors is extremely difficult with DNNs. DNNs often suffer
when the number of classes to recognize is greater than two.
Generally, some classes are more difficult to classify than
others and they will have a smaller recall, .i.e., the fraction
of class-conditional instances that were correctly classified is
small. This issue about unequal recalls occurs in many fields:
imbalanced datasets [3], [4], [5], [6], [7], [8] when the class
proportions are different, prior probability shifts [9] when the
class proportions between the training set and the test set are
different, robustness to adversarial attacks [10], [11] and so
on. Equalizing the class recalls is therefore essential to make
DNNs robust.

The minimax criterion [12], [13], [14], [15] is well known
for identifying the most difficult classes and equalizing as well
as possible the class-conditional classification probabilities [9],
[16]. The minimax approach has often been applied to machine
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learning as in [17], [18], [19], [20], [21], [22]. It is more rarely
applied to DNNs. The first attempt seems to be [16] where
the authors proposed a fixed-point algorithm that requires to
resample the training dataset at each iteration. A more general
study is proposed in [23] where the data distribution can vary
within a predefined bounded set. Recently, the Deep Minimax
Probability Machine [11] applies minimax probability machine
[19], [20] to DNNs in an end-to-end fashion. The authors
put the minimax probability machine on top of a DNN and,
instead of maximizing the likelihood of labels for data, they
employ the objective function of minimax probability machine.
The Deep Minimax Probability Machine is limited to only
two-category classification tasks. Furthermore, it is just an
approximation of the minimax Bayes classifier. The Bayes
optimality is only achieved under some conditions (generally
as the number of the training samples is infinitely large)
provided in [24]. Contrary to the Deep Minimax Probability
Machine, our new approach can deal with several classes
and the Bayes optimality is guaranteed non-asymptotically for
discretized features. Let us note that all these works, including
our paper, should not be confused with the DNN learning rate
study in the minimax sense as in [25], [26]. The minimax
learning rate study is focused on the loss optimization rate,
not on the calculation of a minimax classifier.

In this paper, we combine the deep neural network features
and a Bayes classifier that is trained to be a minimax classifier.
Our approach assumes that the DNN is first trained with the
usual softmax layer. Then, our coupling method makes the
DNN robust by replacing the softmax with a classifier that
takes into account the feature global information and learns the
worst-case probability of misclassification. We can interpret
our model as applying the minimax Bayes classifier to the
final hidden layer of a DNN, instead of using a softmax
layer, as shown in Figure 1. The minimax classifier coincides
with the Bayes classifier that maximizes the probability of
misclassification or, equivalently, minimizes the accuracy.

The main novelties of our classifier are the following. First,
in order to be versatile, our classifier discretizes the features
that were the inputs of the softmax layer. By this way, the
joint distribution of the discretized features is described by a
probability mass function. Our classifier can be applied to any
probability mass function. Any discretization can be suitable

1265ISBN: 978-9-4645-9360-0 EUSIPCO 2023



but the K-means algorithm is a very satisfying discretization
method. By controlling the number of K-means discretization
values, we can deal with any input feature dimensions. Next,
we propose a closed-form of the classification risk within
a Bayesian framework. To get the minimax classifier, we
must compute the worst-case class probabilities, i.e., the prior
probality of each class such that the Bayes risk is maximum.
Finally, a subgradient algorithm is proposed to maximize the
Bayes risk. This optimization step is proved to converge and
can deal with a large number of classes.

The paper is organized as follows. Section II shows how to
couple a DNN with a minimax classifier. We partition the deep
features computed by the DNN with a multivariate discretizer
to get a closed-form empirical Bayes risk. We then maximize
this risk with a projected-subgradient algorithm that computes
the minimax classifier. Section III illustrates the benefits of
our approach on medical images and the CIFAR-100 database.
We compare our algorithm to other kind of machine learning
classifiers (SVM, KNN, etc.) applied on features produced by
a backbone DNN like ResNet-18 and EfficientNet-B7. The
choice of the backbone DNN does not matter because our
approach can fit any DNN. Experimental results demonstrate
an encouraging performance. Section IV concludes the paper.

II. COUPLING DNN WITH MINIMAX LEARNING

A. Coupling a trained DNN with an output classifier

Let Y = {1, . . . ,K} be the set of K ≥ 2 class labels. Let
Φ : X → Y be a DNN [27] which assigns a class label to
each signal or image X in the set X . The architecture Φ is
composed of s hidden layers h1, . . . , hs modeled as

Φ(X) = hs+1 ◦ hs ◦ · · · ◦ h1(X) = hs+1 ◦ φ(X), (1)

where hs+1(·) denotes the output layer, φ(X) is the output
of the last hidden layer and f ◦ g(X) = f(g(X)) denotes the
composition of functions. In the rest of the paper, Z = φ(X) ∈
Rd is called the deep features and hs+1 is called the output
classifier layer. Usually in a DNN, the output decision rule
hs+1 aims to approximate the Bayes classifier. The softmax
classifier [27] is generally used to carry out this approximation.

This paper proposes to replace the output classifier layer
with a minimax decision rule. Thus, we are studying DNNs
that can be expressed as

Φδ(X) = δ ◦ φ(X) = δ(Z), (2)

where δ : Rd → Y is any decision rule playing the role of the
output classifier. In other words, Φδ(X) is a DNN that takes
a decision based on the deep features Z. We do not want to
train again the hidden layers of the DNN but just to couple the
deep features with a specific classifier (only this classifier will
be trained). Our approach is a kind of fine tuning [28]. Let
∆ := {δ : Rd → Y} denote the set of all output classifiers.

B. Empirical risk of the coupled DNN

Let S = {(Yi, Xi) , i ∈ I} be the training dataset containing
m labeled training signals/images, where I is a finite set of
indices. Let L : Y × Y → [0,+∞) be the loss function such

that L(k, l) := Lk,l is the loss of predicting the class l when
the actual class is k. The empirical risk of the DNN Φδ is

r̂ (Φδ) =
1

m

∑
i∈I

L(Yi,Φδ(Xi)) =
1

m

∑
i∈I

L(Yi, δ(Zi)), (3)

where Zi = φ(Xi). Hence, every DNNs of the form Φδ(X)
can be compared by evaluating only the risk r̂φ (δ) defined by

r̂φ (δ) := r̂ (δ ◦ φ) =
1

m

∑
i∈I L(Yi, δ(Zi)). (4)

The empirical risk r̂ (Φδ) of a DNN Φδ is equal to the
empirical risk r̂φ (δ) of the rule δ applied on the deep features.

Let π := [π1, . . . , πK ] be the class proportions of the
training set such that πk is the proportion of signals/images in
class k. The empirical risk r̂φ (δ) can be written as [9], [29]

r̂φ (δ) =
∑

k∈Y πkR̂k (δ) , (5)

where R̂k (δ) is the empirical class-conditional risk of δ

R̂k (δ) =
∑

l∈Y Lk,l P̂(δ ◦ φ(Xi) = l | Yi = k), (6)

and P̂(· | ·) is the conditional probability estimated from S.
The minimax criterion minimizes M(δ) = maxk R̂k (δ).

C. Minimax learning

The calculation of the empirical Bayes risk

r̂Bφ = min
δ∈∆

r̂φ (δ) (7)

is intractable because we can not fit a well estimated empirical
probability distribution on the deep features: their dimension is
large and the number of samples is generally limited. Hence,
we propose to discretize with a multivariate quantizer the
deep features Z and to learn the minimax classifier by using
a closed-form expression of r̂Bφ . Some papers show that the
feature partitioning can improve significantly the performance
of the classifier [30], [31], [32], [33]. Our approach is sum-
marized on Fig. 1. The steps are described hereafter.

Inputs Non-Linear 
Transformations Softmax Output

Neural Networks

Discrete Minimax Classifier
OutputMinimax 

Classifier

Deep  
Features

Deep 
Features

K-means

Discretization

Fig. 1. Schema of our coupling method.
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TABLE I
OVERVIEW OF EACH DATABASE: mtrain , mval , mtest CORRESPOND RESPECTIVELY TO THE NUMBER OF IMAGES IN THE TRAINING, THE VALIDATION

AND THE TEST SETS, AND MIN, RESP. MAX, DENOTES THE MINIMUM, RESP. MAXIMUM, OF THE CLASS PROPORTIONS.

Database K mtrain mval mtest πtrain πval πtest

DermaMNIST 7 7,007 1,003 2,005 Min = 0.01
Max = 0. 67

Min = 0.01
Max = 0.67

Min = 0.01
Max = 0.67

BreastMNIST 2 4,709 524 624 Min = 0.27
Max = 0.73

Min = 0.27
Max = 0.73

Min = 0.27
Max = 0.73

OCTMNIST 4 97,477 10,832 1,000 Min = 0.08
Max = 0.47

Min = 0.08
Max = 0.47

Min = 0.25
Max = 0.25

K-means partitioning. We have tested different methods of
multivariate discretization but the K-means algorithm is the
best trade-off between simplicity and efficiency. Hence, the
deep feature space Rd is partitioned into T disjoint regions
{Ω1, . . . ,ΩT } such that ∪T

t=1Ωt = Rd. This defines a mapping
γ : Rd 7→ T = {1, . . . , T} such that γ(Z) = t if and only if
Z ∈ Ωt. Because a too large value of T can lead to overfitting
regarding the average risk (4), T is chosen by cross-validation.
We test several values of T and we compare the training error
with the validation error of the minimax classifier for each
value of T . We keep the value T such that the validation error
is minimum while the gap, say εT , between the training and
validation errors remains reasonable, about 10% for example.
From the K-means partitioning, we obtain the labeled learning
instances Sγ = {(Yi, ti) , i ∈ I} where ti = γ(φ(Xi)) is the
discrete deep feature profile of the initial signal/image Xi.
Since the deep feature space is now partitioned, we limit the
class of classifiers ∆ to the class of classifiers ∆γ :

∆γ = {δθ : δθ(Z) = θ (γ(Z)) with θ : T → Y}, (8)

where θ(·) denotes any classifier from the discrete space T
into the set of labels Y . A classifier δθ(·) splits the whole
space Rd into T classification regions. It follows that r̂φ (δ)
in (4) is well approximated by

r̂γ (θ) := r̂ (θ ◦ γ ◦ φ) =
1

m

∑
i∈I L(Yi, δθ(Zi)) (9)

where our attention is focused on classifiers δθ ∈ ∆γ .

Minimax classifier. The optimal Bayes classifier associated to
the prior π and that minimizes r̂γ (θ) is

θBπ := argmin
θ∈∆θ

r̂γ(θ), where ∆θ = {θ : T → Y}. (10)

The classifier θBπ is optimal only for the priors π. As shown in
[9], [29], the minimax decision rule θBπ̄ is given by the Bayes
classifier associated with the priors π̄ maximizing r̂γ

(
θBπ

)
with respect to π. Thanks to the multivariate partitioning, the
Bayes risk r̂γ(θBπ ) can be explicitly calculated as

r̂γ(θ
B
π )=

T∑
t=1

min
1≤q≤K

λq,t with λq,t=
K∑

k=1

Lk,q πk p̂k,t, (11)

where p̂k,t denotes the probability of observing the discrete
deep feature profile γ(Z) = t given that the class label is k:

p̂k,t :=
| (Yi, ti) ∈ Sγ : ti = t, Yi = k|

| (Yi, ti) ∈ Sγ : ti = t|
, (12)

where |A| is the number of elements of the set A. The value
λq,t represents the average loss to decide the class q when we
observe the discrete profile t. The function r̂γ(θBπ ) is concave
and piecewise affine over the simplex S = {π ∈ [0, 1]K :∑K

k=1 πk = 1} but not differentiable with respect to π because
of the minimum function over q. In order to compute the
value π̄ = argmaxπ∈S r̂γ(θ

B
π ), we refer to the projected sub-

gradient algorithm used in [9] which is proved to converge
very accurately to π̄.

Output. The final output layer of our approach is the minimax
classifier δBπ̄ that is explicitly given by

δBπ̄ (Zi) = θBπ̄ (ti) = argmin
1≤q≤K

λq,ti with ti = γ(Zi). (13)

This classifier is expressed in a closed-form and is easy to use
in practice. Furthermore, our approach is scalable since i) the
K-means clustering allows us to control the dimension T and
ii) the sub-gradient algorithm works well in high dimensions.

III. EXPERIMENTS

Medical databases. We consider three real medical databases
[34] which differ according to the number of images, the
number of classes and the class proportions (see Table I). As
shown in Fig. 2, DermaMNIST corresponds to dermatoscopic
images of common pigmented skin lesions, OCTMNIST to
optical coherence tomography images for retinal diseases,
and BreastMNIST to breast ultrasound images for which the
objective is to classify benign and malignant tumors [34]. Each
database contains a training set, a validation set and a test set
with 28× 28 pixel images.

To illustrate that our approach can be coupled with any kind
of DNN, we considered two Convolutional Neural Networks
(CNN): ResNet-18 [35] and EfficientNet-B7 [36]. We trained
each CNN on the training set with 100 epochs using the cross-
entropy loss and a SGD optimizer as in [37]. We compared six
multiclass classifiers that exploit the deep features: the softmax
classifier which was considered in the initial CNN, the Discrete
Bayes Classifier (DBC) [15], the K-Nearest Neighbors (KNN),
the Support Vector Machine (SVM), the Weighted Random
Forests (WRF) and our Discrete Minimax Classifier (DMC).
Each output classifier was fitted on the deep features associated
with the validation set in order to avoid overfitting regarding
the average risk (4) possibly due to the deep features coming
from the training set. The hyperparameters of DBC, KNN,
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(1)

(2)

(3)

Fig. 2. (1) BreastMNIST, (2) OCTMNIST, (3) DermaMNIST.

WRF and DMC were tuned from a 4-folds cross-validation
procedure on the validation set. More precisely, the optimal
number T of discrete profiles regarding the DMC was chosen
as explained in the Kmeans partitioning paragraph with for ex-
ample a maximum gap εT = 9% on the BreastMinist database.
The generalization performance of each output classifier was
then evaluated on the test set.

Table II compares the results on the validation and test
sets of each output classifier with respect to three criteria:
the average risk r̂φ(δ) defined in (4), the maximum of
the class-conditional risks, and the difference between the
maximum and the minimum class-conditional risk: ψ(δ) :=
maxk∈Y R̂k(δ) − mink∈Y R̂k(δ). For these experiments, we
considered the L0-1 loss function defined by Lkk = 0 and
Lkl = 1 when k ̸= l, so that the usual accuracy of a DNN
is equal to 1 − r̂φ (δ) and the minimum recall is equal to
1−maxk∈Y R̂k(δ).

The conclusions are the following. First, the DBC, KNN and
SVM output classifiers generally yield to similar results as the
initial CNN using the softmax output layer. This illustrates that
all these decision rules tend to converge to the Bayes classifier.
However, the maximum class-conditional risks associated with
these output classifiers always appear too high. In other words,
these classifiers do not provide efficient predictions for the
difficult classes with the smallest number of images, even if
these classes correspond to diseases. When we need to well
classify the most difficult classes and to balance the risks per
class, a trade-off is necessary: allowing the global risk r̂φ(δ) to
become higher in order to better classify the difficult classes.
This is confirmed by WRF (which are generally known to
be accurate when dealing with imbalanced datasets) and our
DMC. Our DMC generally achieves the lower maximum risks
per class and better equalizes them than the others methods.
This equalization is depicted in Fig. 3 on the DermaMinist
database. The DBC and the initial CNN fail in this task.

CIFAR100 database. We also consider the CIFAR-100
database [38] which contains 60,000 images with K = 100
classes. We considered a training set, respectively a test set,
composed of 40,000 images, resp. 20,000 images. Both the
training and test sets satisfied the balanced class proportions

TABLE II
RESULTS ON THE VALIDATION AND TEST SETS FOR EACH OUTPUT

CLASSIFIER FITTED ON THE EXTRACTED FEATURES.

Classifier DERMA BREAST OCT
δ Val Test Val Test Val Test

ResNet-18
CNN 0.29 0.30 0.17 0.16 0.06 0.28
DBC 0.26 0.32 0.14 0.18 0.07 0.20
KNN 0.22 0.29 0.09 0.14 0.06 0.26

r̂φ(δ) SVM 0.00 0.33 0.00 0.20 0.02 0.28
WRF 0.32 0.41 0.08 0.17 0.08 0.20

DMC* 0.48 0.54 0.17 0.19 0.13 0.21
CNN 1.00 1.00 0.43 0.50 0.35 0.76
DBC 1.00 1.00 0.43 0.57 0.47 0.41
KNN 1.00 1.00 0.19 0.21 0.41 0.73

max
k∈Y

R̂k(δ) SVM 0.00 1.00 0.00 0.47 0.46 0.76

WRF 0.43 0.91 0.12 0.24 0.27 0.52
DMC* 0.54 0.83 0.19 0.19 0.13 0.32
CNN 0.83 0.84 0.36 0.46 0.33 0.69
DBC 0.90 0.87 0.39 0.54 0.46 0.33
KNN 0.93 0.90 0.14 0.09 0.38 0.70

ψ(δ) SVM 0.00 0.83 0.00 0.20 0.44 0.73
WRF 0.43 0.65 0.12 0.07 0.20 0.43

DMC* 0.21 0.37 0.03 0.00 0.01 0.24
EfficientNet-B7

CNN 0.27 0.27 0.22 0.23 0.07 0.27
DBC 0.24 0.28 0.19 0.24 0.08 0.25
KNN 0.25 0.28 0.21 0.22 0.07 0.28

r̂φ(δ) SVM 0.25 0.27 0.22 0.22 0.07 0.28
WRF 0.30 0.36 0.13 0.25 0.09 0.25

DMC* 0.48 0.49 0.23 0.29 0.14 0.22
CNN 1.00 0.87 0.48 0.59 0.41 0.72
DBC 0.96 0.91 0.48 0.69 0.47 0.45
KNN 1.00 1.00 0.38 0.52 0.41 0.73

max
k∈Y

R̂k(δ) SVM 1.00 1.00 0.67 0.79 0.46 0.76

WRF 0.83 0.84 0.14 0.43 0.27 0.52
DMC* 0.43 0.83 0.24 0.52 0.15 0.29
CNN 0.90 0.77 0.35 0.49 0.38 0.69
DBC 0.82 0.87 0.39 0.61 0.44 0.36
KNN 0.95 0.94 0.24 0.41 0.38 0.70

ψ(δ) SVM 0.96 0.96 0.61 0.78 0.44 0.73
WRF 0.65 0.72 0.05 0.24 0.20 0.43

DMC* 0.11 0.41 0.01 0.31 0.01 0.17

Fig. 3. Class-conditional risks from the DermaMNIST validation set for CNN
ResNet-18. The size of each point depends on the class-proportions.

π = [1/100, . . . , 1/100]. We considered the deep features
extracted from the last hidden layer of the CNN EfficientNet-
B0 [36], and we compared the DMC with the Weighted
Logistic Regression (WLR) applied both on the deep features.
Since the class proportions are perfectly balanced, it results
that the weights of the WLR do not help. As illustrated
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in Fig. 4, this classifier is not able to equalize the class-
conditional risks. Despite these difficulties, we can observe
that our approach minimizes significantly the maximum of the
conditional risks on this large scale database.

Fig. 4. Class-conditional risks on the CIFAR-100 database.

IV. CONCLUSION

This paper presents a new approach to equalize the class-
conditional classification probalities of a DNN. Our approach
couples a trained DNN with a minimax classifier as the top
layer. Future work will study the generalization error of this
minimax classifier.
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[26] M. Kohler, A. Krzyżak, and S. Langer, “Estimation of a function of low
local dimensionality by deep neural networks,” IEEE Transactions on
Information Theory, vol. 68, no. 6, pp. 4032–4042, 2022.

[27] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[28] N. Tajbakhsh, J. Y. Shin, S. R. Gurudu, R. T. Hurst, C. B. Kendall, M. B.
Gotway, and J. Liang, “Convolutional neural networks for medical image
analysis: Full training or fine tuning?” IEEE Transactions on Medical
Imaging, vol. 35, no. 5, pp. 1299–1312, 2016.

[29] H. V. Poor, An Introduction to Signal Detection and Estimation, 2nd ed.
Springer-Verlag New York, 1994.

[30] J. Dougherty, R. Kohavi, and M. Sahami, “Supervised and unsupervised
discretization of continuous features,” International Conference on Ma-
chine Learning, 1995.

[31] L. A. Dalton and E. R. Dougherty, “Bayesian minimum mean-square er-
ror estimation for classification error - part i: Definition and the bayesian
mmse error estimator for discrete classification,” IEEE Transactions on
Signal Processing, vol. 59, pp. 115–129, 2011.

[32] Y. Yang and G. I. Webb, “Discretization for naive-bayes learning:
managing discretization bias and variance,” Machine Learning, vol. 74,
no. 1, pp. 39–74, Jan 2009.

[33] L. Peng, W. Qing, and G. Yujia, “Study on comparison of discretization
methods,” IEEE, International Conference on Artificial Intelligence and
Computational Intelligence, pp. 380–384, 2009.

[34] K. He, X. Zhang, S. Ren, and J. Sun, “MedMNIST databases,”
https://zenodo.org/record/4269852#.X mdsulKiHE.

[35] ——, “Deep residual learning for image recognition,” CVPR, 2016.
[36] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-

volutional neural networks,” in International Conference on Machine
Learning, 2019, pp. 6105–6114.

[37] J. Yang, R. Shi, and B. Ni, “Medmnist classification decathlon:
A lightweight automl benchmark for medical image analysis,”
arXiv:2010.14925, 2020.

[38] A. Krizhevsky, “Learning multiple layers of features from tiny images,”
2009, https://www.cs.toronto.edu/ kriz/cifar.html.

1269


