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Abstract—Nonnegative matrix factorization (NMF) seeks a
nonnegative low-rank factorization of a high-dimensional data
matrix. It is a fundamental research area with various appli-
cations in signal processing and machine learning. This paper
proposes a probabilistic semi-NMF formulation, motivated by a
geometric semi-NMF method that has identifiability guarantee
in theory. We reveal insight into how the proposed probabilistic
formulation is related to the volume-minimization semi-NMF
formulation, which is known to have powerful identifiability
guarantee in the noiseless case, and how the proposed proba-
bilistic formulation accommodates noise from the perspective of
geometric semi-NMF. We build an algorithm for the proposed
probabilistic formulation by the variational inference technique,
wherein we employ a specific Dirichlet variational scheme to
tackle a technical challenge, namely, an intractable integral
arising from the proposed formulation. We test the proposed
method on both simulated data and a real-world dataset. The
proposed method shows noise robustness.

Index Terms—Semi-nonnegative matrix factorization, maxi-
mum likelihood, variational inference

I. INTRODUCTION

Non-negative matrix factorization (NMF) is a basic research
problem in data analysis and signal processing. By postulating
a low-rank structure underlying the data matrix, NMF aims to
discover the two nonnegative factors and use them for different
purposes such as clustering, low-dimensional representation,
and source unmixing. There are a wide variety of forms
with NMF. For example, in hyperspectral unmixing of remote
sensing images, a simplex structure is imposed on the factor
to represent the weights of different materials in every image
pixel [1]. In blind source separation, one factor may take
negative values and one may drop the non-negative constraint
on one matrix factor [2], [3]. Also, the study of NMF and its
variants lay foundation for recent advanced NMF designs that
handle non-linearity and multilayer factors [4], [5].

This paper considers semi-NMF that relaxes the non-
negative constraint on one factor. Semi-NMF can be tackled
by different approaches. It can be handled by adapting the
multiplicative update algorithm proposed for NMF [6]. It can
also be tackled by the volume minimization (VolMin) approach
for simplex-structured NMF [7], [8]. In simplex-structured
NMF, VolMin aims to find the smallest data-encompassing
simplex, and the vertices of this simplex form the NMF factors.
Fu et al. [9] found that this idea can be repurposed for the more
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general semi-NMF problem without the simplex structure. It
is shown that, in the noiseless case, VolMin provides powerful
theoretical guarantee on the identifiability of the matrix factors.

Recently, Wu et al. [10] proposed a probabilistic method
for simplex-structured semi-NMF in the presence of additive
Gaussian noise. It is shown that the probabilistic method has a
close connection with the VolMin approach. More specifically,
VolMin may be seen as the probabilistic method when there is
no noise. It is worth noting that similar connections are drawn
in some later works [11], [12].

Inspired by this, in this paper, we extend the idea of the
probabilistic method in [10] to tackle a general semi-NMF
problem in the presence of additive Gaussian noise. In the
same spirit as our previous work, we present an connection be-
tween our probabilistic formulation and the VolMin approach
for semi-NMF. The challenge with the probabilistic semi-
NMF approach (both our formulation and some formulations
in prior studies) is that we need to maximize a likelihood
function that appears as an intractable integral. We employ
variational inference (VI) [13] to deal with this challenge. Both
synthetic and real-data experiments are carried out to illustrate
the performance of the proposed method.

Some related prior works should be mentioned. In the
literature, there are various probabilistic formulations and
inference methods for NMF or semi-NMF. In particular, we
have seen a rich variety of the generative models, non-negative
distribution models for the matrix factors, and the noise models
[14]–[21]. None of the existing studies puts a link between
the probabilistic method and the geometric VolMin approach.
Our study seeks to draw a connection between the two, and
leverage on that to develop a semi-NMF algorithm that may
inherit the fundamental merits of VolMin.

II. PROBLEM FORMULATION

We begin with an NMF model:

Y = AZ⊤ +W , (1)

where Y ∈ RM×N is the observed data; A ∈ RM×K

and Z ∈ RN×K
+ are the underlying matrix factors, with

K ≤ min{M,N} and with R+ denoting the set of non-
negative numbers; W ∈ RM×N is the noise matrix whose
elements independently and identically follow Gaussian distri-
bution with mean zero and variance σ2. Note that we do not
restrict A to be nonnegative, and hence we are considering a
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semi-NMF problem. Given the data Y , we want to retrieve A
and Z.

Without loss of generality, we assume that each column of
Z has unit ℓ1-norm. That, together with the nonnegativity of
Z, means that

zi ∈ ∆ :=
{
z ∈ RN

+ | 1⊤z = 1
}
, i = 1, 2, ...,K.

Assuming no noise, i.e., W = 0, the authors in [9] propose
a volume minimization (VolMin) approach

min
A,Z

det
(
A⊤A

)
, s.t. Y = AZ⊤, Z⊤1 = 1, Z ≥ 0, (2)

where det(·) denotes the matrix determinant. VolMin is known
to be a powerful approach in the noiseless case. Specifically,
under some fairly mild assumptions with the true A and Z, it
is shown that VolMin can uniquely identify the true A and Z
(subject to the minor effects of column and row permutations
with A and Z, respectively). We refer the readers to the
literature [22], [23] for details. In the noisy case, it is typical
to consider the following penalty variation for (2)

min
A,Z

det
(
A⊤A

)
+ λ∥Y −AZ⊤∥2F

s. t. Y = AZ⊤, Z⊤1 = 1, Z ≥ 0,
(3)

where λ ≥ 0 is a parameter that balances volume minimization
and data fitting. In practice, λ is often manually tuned.

In this study, we focus on a probabilistic formulation for
NMF. To handle the constraints placed on Z, we assume that
the columns of Z are independently and uniformly distributed
on the unit simplex ∆, i.e., the columns of Z follow a uniform
Dirichlet distribution

p(Z) =

K∏
k=1

p(zk) =

K∏
k=1

D(zk;1), (4)

where

D(z;β) =
1

B(β)

K∏
i=1

zβi−1
i

denotes the Dirichlet distribution parameterized by β > 0;
B(β) =

(∏N
i=1 Γ (βi)

)
/Γ
(∑N

i=1 βi

)
is the multivariate Beta

function with Γ(x) =
∫∞
0
tx−1e−t dt being the Gamma func-

tion. We view A as a deterministic parameter, and estimate it
via maximizing the likelihood of Y ,

max
θ

log p (Y ;θ) = log

(∫
p(Y |Z;θ)p(Z)dZ

)
, (5)

where θ = {A, σ2} is the parameter to be estimated (we also
estimate the noise variance); p (Y |Z;θ) takes a Gaussian form

p (Y |Z;θ) = N (Y ;AZ⊤, σ2I). (6)

III. CONNECTIONS BETWEEN MAXIMIZING THE
LIKELIHOOD AND VOLUME MINIMIZATION

In this section, we reveal a connection between the prob-
abilistic maximum-likelihood (ML) formulation (5) and the
geometric VolMin formulation (2). For simplicity, we assume
M = K. Assuming that A has full column rank and changing

the variable Z by A−1Y = Z⊤, we can equivalently
transform (2) into

min
A

det
(
A⊤A

)
, s. t. A−1Y 1 = 1, A−1Y ≥ 0. (7)

The proof of (7) is similar to that in [24]. We then turn to the
probabilistic formulation (5). Assuming that σ2 is known, the
likelihood is given by

p (Y ;A) =

∫
N (Y ;AZ⊤, σ2I)

K∏
k=1

I∆(zk)dZ, (8)

where IS(z) is the indicator function, i.e., IS(z) = 1 if x ∈ S
and IS(z) = 0 if x /∈ S. By closely following the approxi-
mation presented in [12] with some subtle modifications, one
can show the following,

− log p (Y ;A) ∝ log det
(
A⊤A

)
+ f(A) + g(A), (9)

where

f(A) = − 2

N

K∑
k=1

N∑
i=1

log Φ

(
â⊤
k yi

σ∥âk∥

)
,

g(A) =
1

N

K∑
k=1

[
logNσ2∥âk∥2 +

(
1− â⊤

k Y 1
)2

Nσ2∥âk∥2

]
,

with â⊤
k being the kth row of A−1; Φ(x) =∫ x

−∞ e−z2/2dz/
√
2π. We shall omit the derivation and

focus on the revelations. Comparing (7) and (9) we see that
they both minimize the volume of A. By noticing the function
− log Φ(x) has large value when x is negative, we can regard
f(A) as a soft constraint for A−1Y ≥ 0 in (9). Similarly,
g(A) serves as a soft constraint to enforce A−1Y 1 = 1. In
this regard, we may view the ML problem (5) as minimizing
the volume of A with penalty terms tailored to accommodate
noise.

IV. MAXIMIZING THE LIKELIHOOD VIA VARIATIONAL
INFERENCE

Now, we focus on algorithm design for the ML problem
(5). The crux of optimizing (5) lies in the integral, which
is intractable in general. We utilize the variational inference
(VI) technique in [10] to deal with the problem. The idea
of VI is to find a tractable lower bound of log p (Y ;θ) and
maximize the lower bound instead. To start with, we introduce
an arbitrary distribution q(Z) that has the same support as
p(Z). By Jensen’s inequality, we have

log p(Y ;θ) = log

(∫
p(Y |Z;θ)p(Z)

q(Z)

q(Z)
dZ

)
≥ Eq(Z)

[
log

p(Y |Z;θ)p(Z)

q(Z)

] , (10)

where equality is achieved when q(Z) = p (Z | Y ;θ). The
idea of VI is to restrict q(Z) such that the above lower bound
is tractable. Specifically, we restrict q(Z) to take a factored
form across the columns of Z,

q(Z) =

K∏
k=1

q(zk) =

K∏
k=1

D(zk;βk), (11)
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where we choose q(zk) as Dirichlet distribution D(·;βk) with
parameters βk > 0, k = 1, 2, ...,K. Substituting q(Z) back,
we obtain the following variational approximation of the ML
problem:

max
B∈RN×K

++ , θ
Eq

[
log p (Y ,Z;θ)−

K∑
k=1

logD(zk;βk)

]
, (12)

where the columns of B collects the variational parameters,
i.e., the βk’s; the optimization is with respect to {B,θ}. Our
strategy is to apply alternating maximization to tackle the
problem. Specifically, in the tth iteration, we perform

A(t+1) = argmax
A

Eq(t)

[
log p

(
Y ,Z;A, (σ2)(t)

)]
, (P1)

(σ2)(t+1) = argmax
σ2>0

Eq(t)

[
log p

(
Y ,Z;A(t+1), σ2

)]
,

(P2)
B(t+1)

= argmax
B∈RN×K

++

Eq

[
log p

(
Y ,Z;θ(t+1)

)
−

K∑
k=1

logD(zk;βk)

]
.

(P3)

A. Update the model parameters A and σ2

Given the variational parameter B, the model parameters A
and σ2 can be updated as follows. It can be shown that the
objective of the sub-problem (P1) has a quadratic form w.r.t.
A:

Eq

[
log p

(
Y ,Z;A, σ2

)]
∝ 1

2σ2

[
2Tr
(
Y ⊤AEq(Z)⊤

)
− Tr

(
A⊤AEq

(
Z⊤Z

))]
.

(13)
Hence, given other variables, the optimal A admits a closed-
form expression

A = Y Eq(Z)
(
Eq

(
Z⊤Z

))−1
. (14)

Using the moment results for Dirichlet distributions, it can be
shown that

Eq(Z) = BDiag−1
(
B⊤1

)
, (15)

with Diag(x) denoting a diagonal matrix with the diagonal
elements given by x. Also we have,

[
Eq

(
Z⊤Z

)]
ij
=


β⊤

i βj

1⊤βi1⊤βj
, i ̸= j

1⊤(β2
i+βi)

1⊤βi(1⊤βi+1)
, i = j

, (16)

where the square on a vector is element-wise.
For the objective function in (P2), we can write,

Eq

[
log p

(
Y ,Z;A, σ2

)]
∝− MN

2
log σ2 − 1

2σ2
Eq

[∥∥Y −AZ⊤∥∥2
F

]
.

(17)

It can be shown that (17) is maximized w.r.t. σ2 if

σ2 =
1

MN
Eq

[∥∥Y −AZ⊤∥∥2
F

]
, (18)

where the expectation can be evaluated based on (15) and (16).

B. Update the variational parameters

We write the objective of (P3) as

Eq

[
log p

(
Y ,Z;A, σ2

)
−

K∑
k=1

logD(zk;βk)

]

∝− 1

2σ2
Eq

[∥∥Y −AZ⊤∥∥2
F

]
+

K∑
k=1

H(βk),

(19)

where the expectation is evaluated similarly to that in (18);
H(β) is the entropy of the Dirichlet distribution which takes
the form

H(β) = logB(β)−
N∑
i=1

(βi − 1)
(
ψ (βi)− ψ

(
β⊤1

))
, (20)

with ψ(x) = d log Γ(x)
dx referring to the digamma function.

The sub-problem (P3) is non-convex and does not have a
closed-form solution. We use an accelerated gradient ascent
method [25] to handle this sub-problem. The accelerated
gradient ascent method was developed for convex problems,
but it has been found to work well empirically in a number of
applications, see, e.g., [26]–[28]. The gradient of the objective
w.r.t. βk is given by

d
dβk

(
− 1

2σ2
Eq

[∥∥Y −AZ⊤∥∥2
F

]
+

K∑
k=1

H(βk)

)

=
d

dβk
H(βk) +

1

σ2

d
dβk

(
βk

1⊤βk

)⊤

Y
⊤
k ak

− ∥ak∥2

2σ2

d
dβk

Eq(zk)

(
z⊤
k zk

)
, (21)

with

Y k = Y −
∑
i ̸=k

ai

(
βi

1⊤βi

)⊤

, (22)

d
dβk

H(βk) = (1⊤βk −N)ψ′(1⊤βk)1−ψ′(βk)⊙ (βk − 1),

(23)
d

dβk

(
βk

1⊤βk

)⊤

Y
⊤
k ak =

Y
⊤
k ak

1⊤βk
− β⊤

k Y
⊤
k ak

(1⊤βk)2
1, (24)

d
dβk

Eq(zk)

(
z⊤
k zk

)
=

1

1⊤βk(1⊤βk + 1)
(2βk + 1)

− 1⊤(β2
k + βk)(21

⊤βk + 1)

(1⊤βk)
2
(1⊤βk + 1)

2 1

, (25)

where ⊙ means element-wise multiplication. Putting the above
pieces together, we obtain the entire algorithm.

V. SIMULATIONS

In this section, we provide simulation results of testing
the proposed algorithm. The main benchmarking algorithms
are the SNMF in [6] and the VolMin in [9] with open-
source codes. We also compare the proposed method with
two probabilistic methods, a variational inference based NMF
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method denoted as VBNMF [14] and a maximum a poste-
riori NMF method [19] denoted as MAPNMF, in the real-
world dataset experiment. We denote the proposed method
as VISNMF. We stop the algorithms, SNMF and VISNMF,
when

∥∥A(t+1) −A(t)
∥∥

F < 10−10 or the maximum number of
iterations 1000 is achieved. For VolMin, we use the default
settings in its open-source codes.

A. Simulated data

We evaluate algorithms’ performance based on the mean
square error (MSE) of estimating factor A:

MSE(A,A) :=
∥AD1 −AΠD2∥2F

∥AD1∥2F
, (26)

where D1 and D2 are positive diagonal matrices normalizing
the columns of A and A respectively; Π is a proper permu-
tation matrix to align the columns. The signal-to-noise ratio
(SNR) is defined as ∥AZ⊤∥2F /(σ2MN). All the results are
obtained by averaging over 50 independent trials.

We generate the factor A with elements independently
drawn from N (0, 1); Z is simulated according to the model
assumption, i.e., columns of Z independently follow D(·;1).
The results are shown in Fig. 1. From the results we can see
that VISNMF performs better than the other algorithms in
the low SNR region. As the SNR increases, the performance
of VolMin improves and is comparable to that of VISNMF.
The running times are shown in Table I. SNMF runs very
fast. VISNMF and VolMin have relatively slow computation
speeds, with VISNMF being slightly faster than VolMin.

M=100, N=200 M=200, N=200 M=200, N=100
SNMF 0.0099s 0.0125s 0.0681s
VolMin 2.7585s 2.7321s 2.7096s

VISNMF 1.8881s 2.3109s 1.4156s
TABLE I

RUNNING TIME. K = 5, SNR = 10dB.

In Fig. 2, we present the impact of the number of the factors,
i.e., K, when the size of Y is fixed. The SNR is set as 10
dB. From the result we see that the performances of all the
considered algorithms become worse as K increases. SNMF
and VISNMF deliver reasonable performance for all the tested
K’s, but VolMin does not perform satisfactorily for large K’s.

We then test two cases where the columns of Z are not
independently and uniformly drawn from the unit simplex.
We let Z be sufficiently scattered [29], under which VolMin
has theoretical guarantee of perfect retrieval of A if the noise
is absent. We generate the elements of Z independently and
uniformly from the interval [0, 1] and randomly zeroing out
35% elements, such that Z is sufficiently scattered with high
probability [30]. The results are shown in Fig. 3. We see
that VISNMF delivers reasonably good results while VolMin
delivers good performance for high SNRs. As a summary, the
above numerical results suggest that VISNMF shows good
robustness to noise.
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(a) M = 100, N = 200, K = 5
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Fig. 1. MSE vs. SNR under different problem sizes.
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Fig. 2. MSE vs. K.

B. Noisy image representation learning

We test the algorithms on a face factor learning task. We use
the Frey Faces data set, which contains about 2000 images
of Brendan’s face with size 20 × 28 taken from sequential
frames of a small video. We add additive white Gaussian
noise on the original images (SNR=10 dB). Fig. 4 shows
the learned factors, i.e., the columns of A reshaped to the
image size. From the results, the five algorithms all learn
meaningful factors from the noisy data. Arguably, VISNMF
and MAPNMF give more sensible factors.
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Fig. 3. MSE vs. SNR with Z being sufficiently scattered.

Fig. 4. Learned factors. Left: K = 4. Right: K = 5. From the top row to
the bottom: VolMin, SNMF, VISNMF, VBNMF, and MAPNMF. SNR=10dB.

VI. CONCLUSION

To conclude, we studied a probabilistic formulation of semi-
NMF. We drew connections between our probabilistic formula-
tion and the geometric method presented in [9], and we derived
a variational inference-based algorithm for our probabilistic
formulation. By simulations, the proposed algorithm exhibits
effectiveness in noisy cases.
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