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Abstract—In this paper, we propose a new method for do-
main and modality adaptation using multi-kernel matching. Our
method is based on the representation of the source and target
sets with several local kernels centered at a small number of
apriori known corresponding samples. We propose to match the
local kernels and, in turn, aggregate the local matches and find
a mapping between the source and target sets. We showcase
the applicability of our method on simulations and real-world
data sets that include EEG recordings for mental arithmetic
identification and single-cell multi-omics. In these applications,
we demonstrate the advantages of our method over recent
competing schemes.

Index Terms—Domain Adaptation, Modality Adaptation, Ker-
nel Matching

I. INTRODUCTION

In a broad range of machine learning applications, the
training and test sets are assumed to reside in the same domain.
However, often in practice, this assumption does not hold, for
example, when the data are collected from different sensors,
subjects, environments, etc. Such domain differences or shifts
typically lead to significant performance degradation.

Many domain adaptation (DA) methods applied prior to
or together with the learning procedure were developed as
a remedy. Notable works include [1]-[4], to name but a few.
Most DA methods assume that the train and test sets have
different distributions but reside in the same feature space.
This limits their applicability because they cannot be directly
applied to data obtained from multiple modalities.

In this paper, in contrast to classical DA methods, we
consider distinct domains residing in different diffeomorphic
feature spaces, facilitating both domain and modality adapta-
tion. Specifically, we assume some latent bijective map exists
between these spaces and propose a domain and modality
adaptation method based on multi-kernel matching (MKM).
Our method receives as input two sets of points sampled
from two domains in two possibly different spaces and a
small reference set consisting of pairs of bijective points from
the two domains. The proposed method has three stages.
First, the two sets are divided into corresponding pairs of
overlapping neighborhoods centered at the reference points.
Then, the correspondence between the neighborhoods of each
pair is found using kernel matching [5]. Finally, the multiple

ISBN: 978-9-4645-9360-0

1285

Ofir Lindenbaum
Faculty of Engineering
Bar-Ilan University
Ramat Gan, Israel
ofir.lindenbaum @biu.ac.il

correspondences between the neighborhoods are integrated
into a single function that maps one set to another.

We remark that the problem we consider is significantly
different from the classical correspondence problem typically
considered in shape analysis and graph matching [6] since we
do not assume that for each point in one set, a corresponding
point exists in the other set.

We test our method on simulations and real-world data
sets that include Electroencephalography (EEG) recordings
and single-cell multi-omics and demonstrate superior or on-
par results compared with the state-of-the-art.

II. RELATED WORK

Domain adaptation is a well-explored problem that has led
to the development of many algorithms. Here, we mention
several related geometric DA methods that serve as baselines
for comparison to our method.

Scatter Component Analysis (SCA) [7] uses a simple ge-
ometric measure called scatfer to construct a linear trans-
formation that attenuates unimportant factors and enhances
the distinction between classes. Multi-domain Discriminant
Analysis (MDA) [8] learns a domain-invariant feature transfor-
mation that maximizes class separability using average class
discrepancy. We remark that both methods do not support
modality adaptation. DA methods based on Optimal Trans-
port (OT) [9] map the source set to the target by solving
the earth movers optimization problem. Manifold Alignment
with Procrustes Analysis (MA-PA) [10] and Semi-Supervised
Manifold Alignment (SSMA) [11] are kernel-based methods.
MA-PA uses kernels to estimate the similarities between points
in each set and then applies Procrustes analysis to the known
corresponding pairs to retrieve a mapping plan. SSMA uses
the Laplacian eigenmaps loss function with additional cost that
accounts for mismatches of the known correspondences. Har-
monic Alignment (HA) [12] and Diffusion Transport Align-
ment (DTA) [13] use a combination of kernel and geometric
approaches to find the mapping plan. HA and DTA use
kernel functions applied to the given sets and then attempt to
minimize the geometric differences between the transformed
sets. A significant difference between DTA and HA is that
DTA uses a reference set, whereas HA is an unsupervised
method.
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III. BACKGROUND
A. Kernel Matching

We briefly describe a method based on kernel matching
originally presented for shape correspondence [5]. Here, we
present it in the context of dataset alignment. Let k be a
symmetric positive kernel function measuring the relation
between two points in some set F, ie., k : F x F — RT.
Assume F is a finite set consisting of N points. Then, the
kernel of the set can be represented by a symmetric matrix
Mz € RVXN whose (i, j)th element is given by

(Mxli; = k(xi, x5),

where z; and x; are the ith and jth samples in the set F.

Let X and Y be two sets consisting of N points, each
with corresponding kernel matrices My and My, respectively.
Accordingly, the sets alignment problem can be formulated as
the following optimization problem

Cope = argminpp |[TMy — MyD||? W
= argmaxpcp, (I, MyT'My),

where Py is the set of permutation matrices of size N x N,
and the inner product is (A, B) = tr(A” B). This optimization
problem is known as kernel matching (KM) (or graph match-
ing (GM) in a more general context). The optimization in (1)
is a quadratic assignment problem that is NP-hard. One can
use a relaxation of the problem and solve

I = argmaxp g (T, My My), 2)

where By is the set bi-stochastic matrices of size N x N.
The optimization problem in (2) can be solved by iteratively
applying a linear programming algorithm such as the simplex
method [14]. Then, given the bi-stochastic matrix I, we find
a permutation according to

Lop = argminpcp || — .
For more details on the kernel matching algorithm, see [5].

B. Discrete Optimal Transport for Domain Adaptation

OT aims to minimize the overall effort required to transport
elements from a source set to a target set. Broadly, the discrete
OT problem formulation for domain adaptation is as follows
[9]. Consider two sets of samples from some space S: X
consisting of N, samples and ) consisting of N; samples.
Let f, € R™s be a vector representing a discrete uniform
density on the samples in X, such that fi[i] = 1/N, for

i=1,...,N,. Similarly, let f, € Rt be a vector representing
a discrete uniform density on Y, such that f;[j] = 1/N; for
j=1,..., Ny In addition, let C € RN=*Nt be a cost matrix,

whose (i, 7)th element encodes the “work” one needs to invest
in order to move sample x; € X to y; € V.
The discrete OT is the following optimization problem

min(T, ©), 3)

where B = {I' € RVN>*NeP1y, = £, TT1y, =
1y, € RN and 1y, € RMs are all one vectors.

f;} and

The OT problem in (3) can be solved using linear program-
ming or more efficiently using the Sinkhorn OT [15]. The
resulting I" represents the mapping plan from X to ).

IV. PROBLEM FORMULATION

Consider two different diffeomorphic feature spaces, de-
noted by S; and S, representing the source and target spaces,
respectively. Let v : Sg — S; denote a diffeomorphism, i.e., a
smooth and bijective map between the spaces, whose inverse
is smooth.

We assume we have access to three sets. The first set,
referred to as the source set, is given by X = {xl}f\/:sl,
consisting of Ny samples from the source space, i.e., z; € S;.
The second set, referred to as the farget set, is given by
YV =Ay f\;tl, consisting of N, samples from the target space,
i.e., ¥; € S;. The third set, referred to as the reference set, is
a set of n pairs R = {(Z;,9;)}11, where Z; € S,, §; € Sy,
Ui = (%), and n < min(Ng, Ny).

Our goal is to find a map I' : X — S; that assigns for each
sample in the source set x; € X its corresponding sample
~v(x;) in the target space, with access only to the three sets
X, ), and R, and without knowing ~. Using for example the
Lo loss, our goal could be formulated as

Ns
i i) = T(@:) 13-
mFmZ;IIV(I) (3)ll2

However, the true map ~y is unknown. To learn I', one could
use the reference set and solve

n
= argain 3 I ~ 1)1
using some regression model for I'. Yet, due to the small size
of n, the available reference pairs (Z;,¥;) are not enough to
learn the mapping of the entire source set. Therefore, such
direct minimization is not possible.

To evaluate the obtained map, we use two quantitative
measures. The first measure is computed in cases, such as
simulations and particular applications, where the hidden
diffeomorphism v is known, and one could directly compute

L, iy (T (@), (@) @

S ()12

in order to evaluate I', where d; is the distance measure of S;.
The second measure considers a downstream task. Suppose we
have the labels of the target set ) denoted by Iy = {I,,}\*,.
To assess the obtained map I', we learn a labeling function
l:S; — R from X = ['(X) and compute

Lo =3 D el ) 5)

where £ : R xR is some loss function measuring the agreement
between labels.
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Algorithm 1: MKM(X, )V, R)

Input: X = {;};°, Y = {y:};}*1, R = {(Z0,5:) }iey
Output: X = {7;}1*, the mapping of X to S;
set X; ={z;}, Vi={g:}Vi<n

while U X, # X do

—

[ 5]

forz<—0tond0

X, =X U mlnd(xz,)
TEX\X;

=Y, U min dy(y;,
Vi=Yi i t(Yi,y)

N

wn

set S = | X
Init I' = Ogn.xn,
for i + 0 to n do
L Calculate K;, Q; kernel matrices for X;, Y
II; = argmaxy;cp (11, Q;ILK;)
10 {II}7; — T [see Sec. V-C]
11 for m + 0 to N, do

12 L i‘m = Zi\il F(ma k)yk

- I Y

V. THE PROPOSED ALGORITHM

The proposed algorithm consists of three main steps. The
first step divides the source and target sets into pairs of equal-
size neighborhoods around the reference points. The second
step finds a correspondence between each pair of neighbor-
hoods. The third step incorporates all the correspondences into
a single mapping plan of the source set to the target space.

The entire algorithm is presented in Algorithm 1, and each
of its steps is described in more detail below.

A. Neighborhoods Construction

For each pair of reference points (Z;,9;), i = 1,...,n, we
build two neighborhoods of equal size, denoted by X; C X
and ); C ). The construction procedure is iterative. We
start by initializing the subsets with the reference points,
ie, X; = {z;} and ); = {g;} for every i = 1,...,n
Then, in an iterative manner, for each ¢ = 1,...,n, we
add the nearest neighbor of z; from X to A; according
to argmingex\ x, ds(Z,v), where dy is a distance in S,.
Similarly, we add the nearest neighbor of y; from )Y to )
using d,, a distance in S;. The procedure stops once we cover

n

the entire source set, i.e., |J &X; = X.
i=1

B. Neighborhood Matching

Since X; and )); represent small neighborhoods around
corresponding points between S; and S;, we expect that the
mapping of the points in X; to the target space S; will be close
to the points in );. Hence, we compute a point correspondence
between X; and ); using kernel matching as follows.

For each pair of neighborhoods ¢ = 1,...,n, we build two
kernels, K; and @;, consisting of pairwise affinities. The two
kernels are symmetric matrices of size S x .S, where S =

|X;| is the cardinality of the neighborhoods, and their (j,!)th
elements are given by

K;(j,1) = exp (—d? (xij,xil)/(%%(i)) ,
QuiG:0) = exp (—d? (i) /(263,))

where €r is a hyper-parameter of the kernel calculated as the
median of all distances in the subset F, i; is the index of the
Jjth point in X;, and 4} is the index of the jth point in .

For each pair of corresponding kernel matrices (K;,Q;),
we solve (1), using the relaxation proposed in Sec. III-A, to
get a mapping plan II; € RS* between X; and );:

I0; = argmaxyycp (11, Q;I1K;).

Then, we extended the mapping plan II; to a full plan I'; €
RNsXNe by setting T;(ij,4]) = IL;(4,1) for j,0 = 1,...,8
and 0 otherwise. Overall, this step results in 7 mapping plans,
{T; € RN*Nt|j =1,... n}.

C. Neighborhood Aggregation

In this step, we build a single mapping plan I' € RVs*N¢
based on the n neighborhood mapping plans I'; as follows.
Consider a source sample z,, € X. If z,, resides only in one
subset X;, we map x.,,, according to I';. If x,,, resides in more
than one subset, we map z,, to the centroid of the respective
mappings. Formally, the aggregated plan I' € R™=*"t is given
by X(m, k) =3, ,Ti(m,k), with
L(m, k) = s——— 11\/ gy Y(m, k), for m = 1,... N,
and k=1,...,N,.

Using I', we map each point z,, in the source set to the
target space as follows &,,, = Zg;l ['(m, k)yx. We denote the
mapped set as X = {@}Z;l Since our algorithm involves
matching multiple pairs of kernels, we term it Multi-Kernel
Matching (MKM).

Regarding computational complexity, we remark that graph
(kernel) matching is an NP-hard problem generally unsolvable
in polynomial time. There exist algorithms that relax the
problem, leading to the computational complexity of O(NZ),
where o > 4 [16]. The computational complexity of MKM
mainly depends on the complexity of the neighborhood match-
ing (Step 10 in Algorithm 1), which relies on graph matching.
There, we solve n matching problems. Assuming that the size
of the subsets is § = e,

this step is of O(;

Ne T
ail )'
VI. EXPERIMENTAL RESULTS

We test MKM on a simulation and two datasets of EEG
measurements and multi-omics data.

A. Toy Problem

This toy problem has two purposes: the first is visualization,
and the second is to show the advantage of MKM over OT-
based methods. OT is a commonly used method for DA. But
as shown in [17], it does not accommodate volume-preserving
discrepancies such as rotations.
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Fig. 1. Adaptation results on the toy problem. (a) The source set. (b) The
target set. (c)-(e) The adaptation results of the source set to the target domain
of OT, MOT, and MKM, respectively, with L evaluation scheme (4) result.
The reference pairs are marked in red.

Therefore, we compare our method to OT as presented in
Sec. III-B with ¢(x;,y;) = ||z; — y;l|2. Because OT does
not use the reference set, we also compare MKM to the
following modified OT for a fair comparison. We add the
elements from the reference set to the source and target sets
X = XU {z},,Y = YU{j}",. Then, we solve the
OT optimization problem (3) between X = {#}™ an
Y= {g} ™ with the following transportation cost matrix
between the two sets

C(%J) = {OA

12

otherwise

N (6)
=2
We call this method Modified OT (MOT).

In this toy problem, we consider the spaces S, = S; = R2.
The diffeomorphism between the spaces v : S; — Sy is

()= () - ) (3 =) ()

i.e., 7 applies rotation and scaling of the vertical axis. The
source set X consists of Ny = 1800 points sampled from
P, ~ N(0,51,), where O is an all-zero vector and I is the
2 x 2 identity matrix. The target set ) consists of Ny = 2000
points obtained by sampling N, points from P, and applying
v. The reference set consists of n = 20 corresponding pairs.

We applied MKM to (X,), R) and compared it to OT and
MOT. Fig. 1(a) shows the source set, where every sample is
colored by its angle with respect to the origin. Additionally, the
reference samples are marked by red circles. Fig. 1(b) shows
the target set. Every sample is colored by the corresponding
angle in the source space. Figs. 1(c-e) show the result of
applying OT, MOT, and MKM, respectively, where each
sample maintains its color.

In Fig. 1(c), we see that OT stretched the source set
vertically but did not retrieve the rotation applied by ~. This
behavior could be expected due to the limitations of OT [17].
In Fig. 1(d), we can see that MOT did not show a significant
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Fig. 2.

advantage over OT. MOT mapped known pairs appropriately,
but, the remaining samples were mapped similarly to the stan-
dard OT without accommodating the rotation. This is because
the cost function of MOT gives a zero cost for mapping known
pairs, but there is no constraint for neighboring samples. In
contrast to OT and MOT, we see in Fig. 1(e) that MKM
recovers the map ~ and appropriately rotates the source set.
To compare the three algorithms, we use the measure L
(4) equipped with the Euclidean distance. The results appear
above each plot in Fig. 1 and further support the visual trends.

B. Mental Arithmetic Identification from EEG

We apply the proposed algorithm to a brain-computer in-
terface (BCI) task. Specifically, we consider the task of inter-
subject mental state identification based on EEG recordings.
We use a publically available data set [18] of EEG recordings
with 30 channels from 29 subjects. A total of NV = 60 trials
were recorded from each subject. At each trial, the subject
was in one of two mental states: while solving an arithmetic
assignment or resting. We postulate that the recordings of
each subject live in a different domain and use MKM for
adapting these domains to facilitate inter-subject identification.
We remark that this dataset inherently does not include known
correspondences between the domains that can be used as a
reference set for MKM. Instead, we assume we have n EEG
recordings with known mental state labels from each subject
and designate these trials with the same label as corresponding.

We follow previous work [17], [19], [20] that showed
that covariance matrices are useful features for various BCI
tasks. Specifically, covariance matrices are Symmetric and
Positive Definite (SPD) matrices. In [21], it was shown that the
Riemannian geometry of SPD matrices based on the affine-
invariant metric [22] provides a useful measure of matrix
similarity. Accordingly, we compute the covariance matrix
of the EEG recordings from each trial, resulting in N co-
variance matrices per sublect anld use the following distance
dspD(Tl,TQ) = ||10g( 2T1 )||F, s.t. 11,15 € RSOXSO
which is induced from the afﬁne invariant metric. In the
remainder of this section, we use dspp Whenever a distance
calculation is required. It is worthwhile noting the capability
of MKM to support various feature and data metric spaces.

Let X7 = {2}, denote the set of covariance matrices of
subject j, where 4 is the trial index. In addition, let R =
{(z],2})}"_; denote the reference set between X7 and X'.
We apply MKM to every pair of sets X7 and X' and their
associate reference set Rj’ljor every 1 < 4,1 <291 #m
and obtain the adapted set X7.
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TABLE I
CLASSIFICATION ACCURACY IN SINGLE-CELL MODALITY MATCHING.

Downstream Method
Task DTA | MA-PA | MAGAN | SSMA | MKM
1-NN 0.726 0.666 0.673 0.721 0.7729
10-NN 0.708 0.581 0.675 0.659 0.733

We compare MKM to several other DA algorithms: OT,
MOT, SCA, MDA, and HA. TON evaluate the adaptation, we
train a linear SVM classifier on X7, test it on X, and compute
Lo (5) to assess the classification result.

We repeated this experiment for different numbers of corre-
sponding pairs n. In Fig. 2, we show the average results over
all possible pairs of subjects as a function of the relative num-
ber of known correspondences. We see that the performance
of MKM increases as the number of known correspondences
grows. For more than 12% known correspondences, MKM
outperforms all the other algorithms by a large margin. How-
ever, we see that for a small number of known correspondences
(n < 7), OT, MOT, and MDA outperform MKM because
a small number of reference pairs could make MKM very
sensitive to errors in one of the kernel matching problems.

This experiment highlights two fundamental advantages of
MKM. First, MKM is easily adapted to different feature
spaces, e.g., the space of SPD matrices. Second, MKM per-
forms well even when accurate sample-wise correspondences
between the domains are unavailable.

C. Single-Cell Modality Matching

We showcase an application of MKM to modality adapta-
tion. For this purpose, we consider publicly available data from
a recent competition [23]. The dataset contains two sets from
different modalities with a known sample correspondence. The
first set consists of measurements of gene expressions (RNA)
of multiple cells. The second set consists of protein abundance
(ADT) from the same cells.

We repeated the experiment in [13] with MKM as the
modality matching algorithm. Our evaluation is equivalent to
calculating Lo with 1-NN or 10-NN as the labeling function.
Table I shows the performance of MKM compared to several
competing algorithms. We see that MKM outperforms all the
other algorithms.

We tested the sensitivity of MKM to false sample corre-
spondences by applying it with a reference set of size N,/10,
out of which some were not from the same cell but only of
the same cell type. We repeated the previous experiment with
different numbers of true (and false) correspondences. The
results are in Fig. 3. The results indicate the robustness of
MKM to the false correspondences. Specifically, even in the
presence of false correspondences, MKM still outperforms the
other algorithms in Table .
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