
A Water-filling Algorithm Maximizing the Volume
of Submatrices Above the Rank

Claude Petit
Inria

Rennes, France
claude.petit@inria.fr

Aline Roumy
Inria

Rennes, France
alione.roumy@inria.fr

Thomas Maugey
Inria

Rennes, France
thomas.maugey@inria.fr

Abstract—In this paper, we propose an algorithm to extract,
from a given rectangular matrix, a submatrix with maximum
volume, whose number of extracted columns is greater than
the initial matrix rank. This problem arises in compression
and summarization of databases, recommender systems, learning,
numerical analysis or applied linear algebra. We use a continuous
relaxation of the maximum volume matrix extraction problem,
which admits a simple and closed form solution: the nonzero
singular values of the extracted matrix must be equal. The
proposed algorithm extracts matrices with singular values, which
are close to be equal. It is inspired by a water-filling technique,
traditionally dedicated to equalization strategies in communi-
cation channels. Simulations show that the proposed algorithm
performs better than sampling methods based on determinantal
point processes (DPPs) and achieves similar performance as the
best known algorithm, but with a lower complexity.

Index Terms—Matrix volume, column subset selection

I. INTRODUCTION

In this paper, we address the problem of column subset
selection (CSSP) [1], [13], [17] with the following framework:
the elements of a dataset of cardinal n are characterized by
a real vector of d coordinates, so that the dataset can be
modelized by a matrix A ∈ Rd×n. Column vectors represent
the elements, called items, rows represent features describing
the items via a latent space isomorphic to Rd. To allow
the features to be comparable, we suppose that each column
of A is normalized. The problem is to select m columns
(d ≤ m ≤ n) of the initial data matrix A (assumed to
be of rank d, much lower than n and m), thus forming a
rectangular submatrix B ∈ Rd×m. Moreover, the criterion
used to select the submatrix is the maximization of the volume
of B. This framework can be seen as a compression method
which samples the population of items, while keeping all the
features characteristics.

Maximizing the volume occurs in many applications: some
search engines data summarization algorithms rely on extract-
ing a small representative subset from a given dataset [3]. Sam-
pling data requires to select items by maximizing a cost func-
tion related to a quantity of information [6]. Compression of
databases can be done by selecting a subset of the initial base,
keeping as much information as possible [1], [13]. In each
of these applications, the choice of the subset is performed
by maximizing the volume of an extracted submatrix B; the
extraction can be performed on rows or columns, reflecting
either a feature selection, either a sampling process, and the
submatrices can be transformed into a square Gram matrix

B′B or a covariance matrix BB′, in which case the volume is
given by the determinant of the underlying symmetric positive
semidefinite (SPSD) matrices. In numerical linear algebra, to
optimize the condition number or to build a good low rank
approximation of a square matrix, a popular method is to ex-
tract square submatrices by selecting same rows and columns,
leading to pseudo-skeleton, cross or CUR approximations [4],
[8], [9], [12]; there, the volume maximization relies on QR,
LU or singular value decomposition. All methods based on
determinantal point processes (DPPs) form a Gram matrix
A′A, from which a square submatrix of maximum determinant
is extracted [10]. All methods introduced above assume that
the number of samples is below the rank. The problem and
intuitions are different when the number of samples is above
the rank. A method exists [14] but is greedy and does not
really draw good intuitions on what is the best way to sample
the matrix.

In this work, we propose a new algorithm relying on
a water-filling technique [5], to extract maximum volume
rectangular submatrices, under the assumption that the number
of extracted columns is greater than the rank. Our method
is one-shot, and is inspired by a continuous relaxation of the
volume maximization problem, whose solution is a matrix with
equal singular values. Therefore, we propose a water-filling
approach [5], that tends to equalize the singular values of the
submatrix. Interestingly, the achieved complexity is lower than
the existing greedy algorithm. The overall complexity of the
DPP algorithm is in O(n3) operations [16], that of the greedy
algorithm in O(nm2) [14], while the proposed algorithm is
in O(nd2) operations, which is significantly lower, as d is
assumed to be lower than n and m.

The paper is organized as follows. In section II, we for-
malize the several optimization problems. We present some
mathematical tools to precise the links between them and
deduce an objective function related to the spread of the
covariance matrix spectrum. Section III presents how to solve
the new problem, describes the algorithm implementation and
its complexity, while section IV is dedicated to simulations
and comparisons with other methods.

II. PROBLEM FORMULATION AND ANALYSIS

In the following, we fix n, d,m (d ≤ m ≤ n). We denote bi
the columns of A ∈ Rd×n and B ∈ Rd×m, Bk = (b1, ..., bk)
for d ≤ k ≤ m. Σ = BB′ is the covariance matrix and

1295ISBN: 978-9-4645-9360-0 EUSIPCO 2023

G = B′B the Gram matrix of B. The notation B ⊂ A means
that the columns of B form a subset of the columns of A.
Tr is the trace operator and Sp denotes the spectrum. ||.||p
represents the p-norm for p = 1, 2.

In the rest of the paper, we further assume that the matrix
B is of rank d. For such a rectangular matrix B of rank d, we
define the volume, as Ben-Israël in [2], [17]:

vol(B) =

d∏
i=1

σi =

√√√√ d∏
i=1

λi (1)

where σ1 ≥ σ2 ≥ ... ≥ σd > 0 are the d strictly positive
singular values of B, λi = σ2

i are the d strictly positive
eigenvalues of Σ = BB′ or G = B′B. In particular, as
Σ = BB′ is a square matrix of rank d, we have

vol(B) =
√
det(BB′). (2)

We can now formulate our problem, where we look for a
submatrix of A that maximizes the volume (see Pb. 1).

Problem 1 (Discrete maximization of the volume).

max
B⊂A,∀i ||bi||=1

vol(B)2 = max
B⊂A,∀i ||bi||=1

det(BB′) (3)

where the equality follows from (2).

Since Pb. 1 is NP-hard [17], we consider a continuous relax-
ation of this problem, where B is an arbitrary matrix with
normalized columns, and is not necessarily a submatrix of A.

Problem 2 (Continuous relaxation of Pb. 1).

max
B:∀i ||bi||=1

det(BB′) = max
B:Tr(BB′)=m

det(BB′) (4)

Proof. To prove this equality, we first solve the problem
defined in the RHS of (4). The Lagrangian is

L(λ, α) =
d∏

i=1

λi + α

(
d∑

i=1

λi −m

)
. (5)

The differentiation of L with respect to each λi gives

∀i = 1, .., d, α =
∏
j ̸=i

λj . (6)

Therefore, all λi are equal, and the common value is

∀i, λi =
1

d

d∑
i=1

λi =
m

d
. (7)

Finally, the maximum square volume is vol(B)2 = (md)
d, and

is reached for the scalar matrix BB′ = m
d Id.

We now show the equality in (4):
• We first show max

B:∀i ||bi||=1
det(BB′) ≤ max

B:Tr(BB′)=m
det(BB′).

This follows from the fact that,

∀i, ||bi|| = 1 ⇒ Tr(BB′) = Tr(B′B) =
∑
i

||bi||2 = m. (8)

• Note that the converse is not true: Tr(BB′) = m ≠⇒
∀i, ||bi|| = 1. Therefore, to show that both maximum are
equal, we show that the maximum value achieved in the RHS

of (4) can be achieved by a matrix B with normalized columns.
More precisely, we show that the optimal scalar matrix m

d Id
can be decomposed into the product of BB′, where B has
normalized columns. This is illustrated in Fig. 1.

{B : Tr(BB′) = m}

{B : ∀i, ||bi|| = 1}

{B : BB′ = m
d Id}

{Bopt}

Fig. 1. The solutions of the RHS of (2) is the the red set, and the solutions
of the LHS (2) is the intersection of the red set and the dashed set.

To show this, we introduce the 2m reals: di = 1, 1 ≤ i ≤ m
and e1 = ... = ed = m

d , ed+1 = ... = em = 0. Since
m∑
i=1

di = m =

m∑
i=1

ei, and

∀k < m,

k∑
i=1

di = k ≤
k∑

i=1

ei = min(k, d)
m

d

(9a)

(9b)

((9b) follows from m ≥ d), from the Horn theorem [11,
Th.B.2. p. 302], there exists a symmetric m ×m real matrix
G, with eigenvalues ei and diagonal entries di. G being
symmetric, it can be decomposed into G = B′B, where B
satisfies ∀i, ||bi||2 = di = 1 i.e. B has normalized columns.
Moreover, the d × d matrix BB′ has the same non zero
eigenvalues as G i.e. the eigenvalues are all equal to m

d and is
symmetric. So, BB′ = m

d Id (see (10)). We have constructed
a B matrix that maximizes the volume (BB′ = m

d Id) and
whose columns are normalized.

Interpretation: the continuous relaxation Pb. 2 gives in-
sights on how to solve the original discrete Pb. 1. More
precisely, we look for a submatrix B of A such that the
covariance matrix BB′ is close to a scalar matrix. The latter
constraint is however difficult to implement. Instead, we rely
on the following equivalent statement

BB′ = λId ⇐⇒ Sp(BB′) = {λ}, (10)

which states that all eigenvalues should be equal. This leads
to the minimization Pb. 3 proposed in the next section, that
tends to equalize the eigenvalues of the spectrum.

III. PROPOSED ALGORITHM

The solution of Pb. 2 is a diagonal matrix with a unique
eigenvalue equal to λ = m/d. This result gives the key prin-
ciple of the proposed algorithm. Indeed, we seek to equalize
the eigenvalues of the extracted matrix B, constraining the
spectrum of BB′ to be as narrow as possible:

Problem 3 (Minimization of the spectrum’s spread). Find:

1296

argmin
B⊂A

d∑
i=1

(
λi(BB′)− λ

)2
(11)

where A has normalized columns, λi(BB′), 1 ≤ i ≤ d are the
d eigenvalues of BB′, and λ is the common value to reach.

We now describe an algorithm able to promote equalization
of the eigenvalues of BB′ during the selection of columns,
and solve Pb. 3.

A. Initialization

The initialization step consists in producing a square matrix
Bd of size d×d using any existing algorithm of volume max-
imization, for example an exhaustive search if the dimension
d is low enough, or the MAXVOL algorithm [9].

B. Key principle: constrain the spread of the spectrum

m− d columns are next added to Bd to form Bm. For the
sake of conciseness, we denote the covariance matrices Σd =
BdB

′
d, Σm = BmB′

m, and their eigenvalues λ1, ..., λd, and
λ1(Σm), ..., λd(Σm), respectively. The effect of concatenating
to Bd one or more columns, in order to build the matrix Bm,
can be characterized by using the decomposition in terms of
rank one operators:

Σm =

m∑
i=1

bib
′
i = Σd +

m∑
i=d+1

bib
′
i (12)

Concatenating m − d columns to Bd is thus equivalent to
adding m− d rank one operators to Σd. From [7], [15], if ui

is a normalized eigenvector related to λi, then, for any column
b, we have that

λi ≤ λi(Σd + bb′) ≤ λi + 1 (13)

where equality occurs in the second inequality if and only if
b is colinear to ui. In other words, the eigenvalues of Σm are
obtained from those of Σd by summing the m−d contributions
from all the rank one perturbations:

λi(Σm) = λi + ϵi, i = 1, ..., d (14)

where 0 ≤ ϵi ≤ m− d.
Interestingly, a continuous relaxation of Pb. 3 admits a

closed form solution. Indeed, consider the problem{
min
ϵi

∑d
i=1

(
λi + ϵi − λ

)2
s.t.
∑d

i=1 ϵi = m− d ; ϵi ≥ 0
(15)

where the equality constraint follows (8) and
∑d

i=1 ϵi =
Tr(Σm)− Tr(Σd) = m− d. The Lagrangian is

d∑
i=1

(
λi + ϵi − λ

)2
+ α

(
d∑

i=1

ϵi −m+ d

)
−

d∑
i=1

(βiϵi)

and the first order conditions are obtained by differentiating
L with respect to ϵi, α and βi: −α/2 = λi − λ+ ϵi − βi , ∀i∑

i ϵi = m− d
ϵi = 0 or βi = 0, ∀i

(16)

The two first equations of (16) give

λ− α > λi if βi > 0,

ϵi =
(
λ− α

)
− λi if ϵi > 0.

(17)

(18)

Therefore, in the continuous relaxation problem the common
achieved singular value is λ− α.

C. A discrete water-filling solution

The solution (18) to the continuous relaxed problem (15) is
similar to the waterfilling solution used in power allocation for
multiple channel communication [5]. For the latter problem,
the optimum is achieved, when the total power is evenly
distributed among each channel. Similarly, in our problem, the
goal is to add m columns to the d×d Bd matrix such that the
eigenvalues of the obtained matrix are all equal to a common
value λ, except for the eigenvalues λi that are already above
the threshold λ.

For the sake of computational efficiency, we propose an
algorithm that allows to select m columns all at ones. To do
so, we order the columns in A according to their distance to
the eigenvectors ui of Σd. More formally,

∀i, Ai = (bi1(i), bi2(i), ...bin(i)), where

||ui − bi1(i)||
2 ≤ ||ui − bi2(i)||

2 ≤ ... ≤ ||ui − bin(i)||
2

(19)

Second, to equalize the spectrum, we first determine the
continuous increase ϵi for each eigenvalue with (18), where
the threshold is approximated by λ − α = m

d . Indeed, there
are d eigenvalues, and due to the norm constraint on the
columns of A and from (8), the sum of the eigenvalues is∑d

i=1 λi(Σm) = m. Then, we round ϵi to determine how
many columns should contribute to each eigenvalue:

ci =
⌈
(m− d)

ϵi
||ϵ||1

⌉
, i = 1, ..., d (20)

Note that by doing so, we consider that adding a vector b ∈ Ai

to Bd modifies the eigenvalues of the new matrices into:{
λi(Σd + bb′) = λi + 1,

λj(Σd + bb′) = λj , ∀j ̸= i.

(21a)
(21b)

In other words, we neglect the angle between b and ui. Then,
to meet the constraint

∑d
i=1 ci = m − d, the update of ci is

processed iteratively: cd is first evaluated, then cd−1, etc. until
the (m − d) columns are attributed, where we assume that
the eigenvalues are ordered by decreasing order λ1 ≥ λ2....
This allows to favor the smallest eigenvalues, that need to be
increased. Finally, when ci (the number of vectors in Ai to
be selected) is set, the columns chosen are the closest ones
to ui in Ai. To favor the smallest eigenvalues, we first select
vectors in Ad, and remove the selected columns from all other
sets A1 to Ad−1. Then we proceed with ud−1.

D. Implementation and complexity

We now detail the complexity of each step of the proposed
algorithm:

1297

Algorithm 1 WaterMaxVol
Require: A ∈ Rd×n,m ∈ Jd, nK
Ensure: B ∈ Rd×m

1: Initialize Bd ∈ Rd×d ▷ Exhaustive search or MaxVol
2: J = column indices of B
3: Diagonalize Σd = BdB

′
d = Q′DQ,

4: Q = (u1, .., ud), D = diag(λ) = diag(λ1, .., λd)
5: Partition A \Bd into Ai according to S = Q′A
6: Evaluate vector ϵ = (ϵ1, ..., ϵd)
7: i=d
8: while i > 0 do ▷ Evaluate c = (c1, ..., cd)
9: ci = ceil ((m− d)ϵi/||ϵ||1)

10: Select ci first indices of row Si : Ji
11: J = J ∪ Ji
12: i=i-1
13: end while
14: Return B = AJ

• the initialization step has the complexity of the chosen
method, for example O(nd2) for MAXVOL algorithm.

• diagonalization of Bd: O(d3).
• evaluation of S = Q′A: O(nd2).
• ranking of the resulting matrix: O(dn lnn), by ordering

d rows of n elements.
• evaluation of ϵ: O(n).
• each of the m − d iteration in the while loop takes a

constant number of operations, so that the complexity of
the loop is O(m− d).

The overall complexity of the algorithm is thereby O(nd2)
operations, with d assumed to be much lower than n. By using
efficient matrix product algorithms, it is possible to lower each
cubic power complexity step into 2 + δ, with δ ∈]0, 1[.

In comparison, the traditional DPP sampling method is
based on a three step processes where steps 1 and 3 have the
highest complexity: the initialization step is the eigendecom-
position of the L-ensemble matrix L = A′A and its complexity
is in O(n3) operations. The third step is a Gram-Schmidt
decomposition whose cost is O(nm3) for the classical method
and O(nm2) for the best known algorithms [16].

The last comparison is made with the RECT MAXVOL
algorithm dedicated to rectangular matrices [14]. The initial-
ization step has complexity O(nd2), then the algorithm run
in O(nm2) operations. For both steps, as d is assumed to be
much lower than n, it is more complex than our method.

IV. EXPERIMENTAL RESULTS

A. Achieved volume

In the following figures, we compare the performance of the
proposed WaterMaxVol algorithm with known algorithms of
volume maximization, the first comparison being made with a
uniform random choice of columns.

A classical and efficient way to perform CSS with the
objective of maximizing volume is to use DPPs. For the sake
of brevity, we refer the reader to [1], [10] for a complete
outline of DPPs and kernel methods.

We consider a subclass of DPPs, called L-ensembles, and
well suited to our framework. Indeed it is characterized by a
symmetric semi-definite matrix indexed by the elements of the
dataset. In our model, this kernel matrix is the Gram matrix
G = B′B. The DPP is the probability distribution over all
subsets of the items such that:

P(S) =
det(G)

det(A′A+ I)
∝ vol(B)2 (22)

where G = B′B and B is the extracted matrix from A whose
m column indices belong to S: B = (bi)i∈S . But G is a
n × n matrix of rank d < n, so that det(B′B) = 0. For
(22) to define a probability distribution, the kernel function G
must be modified in such a way that it becomes semi definite
positive.

Here we consider two kernel functions. First, G is defined
by the kernel function of a modified Gram matrix G = B′B+
δI , where δ > 0 is a real positive number and G is then definite
positive.

The second kernel is defined through an embedding into a
nonlinear feature function ϕ : Rd −→ Rn such that the family
(ϕ(bi); i = 1, ..., n) is linearly independent. Then, the kernel
matrix is defined by the Euclidean dot product

Gij = ⟨ϕ(bi), ϕ(bj)⟩ (23)

for each pair of columns bi, bj .
In addition to ensure linear independency, the function ϕ

has to reflect the way initial column vectors contribute to the
volume of the extracted matrix. So instead of the traditional
basis radial function kernel, we choose a cosine kernel which
is maximum when the variables are orthogonal and zero when
they are colinear. Thanks to the kernel trick, We do not need to
explicit the function ϕ, but just to define Gij = 1−cos(bi, bj).

The implementation of DPPs is made with MATLAB using
the code of Alex Kulesza. Our implementation uses also
the MAXVOL algorithm [9] during the initialization step.
MAXVOL algorithm is available in MATLAB as part of the
TT-Toolbox of Ivan Oseledets.

Fig. 2. Maximum volume comparison of 6 algorithms, as a function of m
varying from 5 to 20. The average of 10 independent samples of the logarithm
of volume are given in ordinate. Blue dots: two DPPs algorithms (Gram L-
ensemble and cosine kernel). Green: real maximum by exhaustive search.
Grey: uniform random choice. Black: RECT MAXVOL algorithm of [14].
Red: our algorithm.

1298

Fig. 3. Maximum volume comparison of 5 algorithms, as a function of m
varying from 10 to 70, with an initial datamatrix of 100 columns. The average
of 10 independent samples of the logarithm of volume are given in ordinate.
Blue dots: two DPPs algorithms (Gram L-ensemble and cosine kernel). Grey:
uniform random choice. Black: RECT MAXVOL algorithm of [14]. Red: our
algorithm.

The algorithm performs well for the first half values of m.
When m increases and comes closer to n, the possible choices
of columns decrease and all methods give approximatively the
same results.

B. Sprectrum equalization of the proposed algorithm

The effect of the algorithm can be visualized in Fig. 4, in
the case of random Gaussian i.i.d. matrices. 100 independent
samples of an d×n standard Gaussian matrix A are generated.
For each dimension m varying in Jd, nK (corresponding to
one vertical line), we extract a d × m random submatrix C
and draw its sprectrum in grey. We also extract a d × m
submatrix B by using the WaterMaxVol algorithm and draw
its spectrum in red. The narrowing of the red tube around the
theoretical mean curve

√
m/d illustrates the performances of

the optimization for the first half values of m. This results
remain licit for any random vectors whose distribution is either
spherical symmetric, either coordinates independent.

Fig. 4. From a d×n Gaussian matrix A, spectrum of d×m extracted random
matrices C (grey) and spectrum of d×m extracted submatrices B obtained by
the proposed WaterMaxVol (red), as a function of the number of columns m.
Mean curve

√
m/d is in blue. d = 10, n = 100, 100 independent samples

superimposed.

V. CONCLUSION

In this work, we proposed an algorithm to extract a max-
imum volume rectangular submatrix of size greater than the
dataset matrix rank. Thanks to a continuous relaxation which
admits a closed form solution, we propose to equalize the
singular values from the extracted matrix. The algorithm can
therefore be interpreted as a water-filling technique used in
telecommunications to equalize the allocated powers.

Simulations showed that the proposed algorithm out-
performs DPPs methods. Moreover, the proposed algo-
rithm, the exhaustive search, and the best known algorithm
(RECT MAXVOL) have all similar performances. However,
our approach achieves the maximum with a much lower
complexity.

REFERENCES

[1] Ayoub Belhadji, Rémi Bardenet, and Pierre Chainais. A determinantal
point process for column subset selection. Journal of Machine Learning
Research, 21(197):1–62, 2020.

[2] Adi Ben-Israel. A volume associated with m x n matrices. Linear
Algebra and its Applications, 167:87–111, 04 1992.

[3] Elisa Celis, Vijay Keswani, Damian Straszak, Amit Deshpande, Tarun
Kathuria, and Nisheeth Vishnoi. Fair and diverse DPP-based data
summarization. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80
of Proceedings of Machine Learning Research, pages 716–725. PMLR,
10–15 Jul 2018.

[4] Alice Cortinovis, Daniel Kressner, and Stefano Massei. On maximum
volume submatrices and cross approximation for symmetric semidefinite
and diagonally dominant matrices. Linear Algebra And Its Applications,
593:251–268, 2020.

[5] Thomas M. Cover and Joy A. Thomas. Elements of Information
Theory 2nd Edition (Wiley Series in Telecommunications and Signal
Processing). Wiley-Interscience, 2006.

[6] Amit Deshpande, Luis Rademacher, Santosh Vempala, and Grant Wang.
Matrix approximation and projective clustering via volume sampling.
In Proceedings of the Seventeenth Annual ACM-SIAM Symposium on
Discrete Algorithm, SODA ’06, page 1117–1126, USA, 2006. Society
for Industrial and Applied Mathematics.

[7] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The
Johns Hopkins University Press, third edition, 1996.

[8] S. Goreinov and E. Tyrtyshnikov. The maximal-volume concept in
approximation by low-rank matrices, pages 47–51. 2001.

[9] S. A. Goreinov, I. V. Oseledets, D. V. Savostyanov, E. E. Tyrtyshnikov,
and N. L. Zamarashkin. How to Find a Good Submatrix, pages 247–256.

[10] Alex Kulesza and Ben Taskar. Determinantal Point Processes for
Machine Learning. Now Publishers Inc., Hanover, MA, USA, 2012.

[11] Albert W. Marshall, Ingram Olkin, and Barry C. Arnold. Inequalities:
Theory of Majorization and its Applications, volume 143. Springer,
second edition, 2011.

[12] Stefano Massei. Some algorithms for maximum volume and cross
approximation of symmetric semidefinite matrices. BIT, 62(1):195–220,
mar 2022.

[13] Thomas Maugey and Laura Toni. Large database compression based on
perceived information. IEEE Signal Processing Letters, 27:1735–1739,
2020.

[14] Aleksandr Mikhalev and I.V. Oseledets. Rectangular maximum-volume
submatrices and their applications. Linear Algebra and Its Applications,
538:187–211, oct 2017.

[15] Wasin So. Rank one perturbation and its application to the laplacian
spectrum of a graph. Linear and Multilinear Algebra, 46(3):193–198,
1999.

[16] Nicolas Tremblay, Simon Barthelme, and Pierre-Olivier Amblard. Op-
timized algorithms to sample determinantal point processes, 2018.

[17] Ali Çivril and Malik Magdon-Ismail. On selecting a maximum volume
sub-matrix of a matrix and related problems. Theoretical Computer
Science, 410(47):4801–4811, 2009.

1299

