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Abstract—Deep learning is considered as a disruptive method
in the field of mineralogy and hyperspectral imaging. Many
techniques exist to gain mineralogical information. Amongst them
powder X-Ray diffraction (XRD) is very popular and powerful,
while hyperspectral imaging is used in many applications such as
Earth observation. A key issue for both XRD and hyperspectral
imaging is not only to identify the endmembers constituting a
mixture but also quantify the abundance of each endmember. In
this study, we propose completely novel neural network (NN)
training losses specifically designed for proportion inference.
Extensive experiments illustrate that the proposed approach
allows validated NN architectures to be trained to infer accurately
on proportions.

Index Terms—Proportion inference, Hyperspectral Unmixing,
X-Ray Diffraction, Neural Networks, Dirichlet distribution.

I. INTRODUCTION

Determining the nature of the mineral phases and their
proportions in soil, sediments, and engineered materials is
fundamental to understand and predict the chemical and me-
chanical properties of the studied materials. Such determina-
tion is most efficiently done with the help of powder X-ray
diffraction (XRD). Methods such as the widely used Rietveld
method [1] allow for an accurate and fast determination of
the nature, crystal structure, and proportion of most mineral
phases in samples. However, this method, which relies on a
least squares algorithm, requires preliminary qualitative exam-
ination of XRD patterns to qualitatively identify all mineral
phases, which may be extremely time consuming or even
virtually impossible in case of large datasets such as those
acquired during XRD-Computed Tomography [2]. There is
therefore a genuine need to develop a method that allows for
the identification and quantification of all phases contained
in a mineralogical assemblage. Several recent contributions
involve deep NN (DNN) [3] for mineral identification [4],
[5], providing promising results for robust identification of
mineralogical phases even in the presence of slight variations
in crystallographic parameters (e.g. crystal size, morphology,
and shape, and lattice parameters). The novelty of our work is
to focus on the proportion inference of mineral phases. That is
given a XRD patterns, we infer the proportion of each involved
phase.

While the XRD was our main motivation to introduce a
method for proportion inference based on NN, other fields of
application such as hyperspectral unmixing (HU) appear to
be highly relevant. The HU aims at identifying the spectral
signatures of the endmembers (i.e. the components) and their
abundance vector (proportions are referred as abundances in
the HU literature). This task is challenging and has been
addressed in many contributions. Bioucas-Dias et al. [6] and
Iordache et al. [7] propose an overview of many existing
solutions. The most common methods are the SUnSAL al-
gorithm [8] or methods derived from Non-negative matrix
factorization (NMF) [9]. Wang and Jia [10] introduce an
extended Support Vector Machine (eSVM) whereas Li, Chen
and Rahardja [11] present a superpixel construction for HU.

Likewise, solutions involving NN are gaining popularity
spurred by growth in computational resources. Auto Asso-
ciative NN combined with Multilayer Perceptron have been
proposed in [12]. Recent works focus on CNN architectures
to solve the problem of abundance and endmember inference
[13], [14].

In this work, we introduce a new training loss for NN-
based proportion inference. This loss relies on a likelihood
maximization for Dirichlet variates. The proposed modeling
shares similarities with the work of Sensoy et al [15] that
uses Dirichlet variates for assessing classification uncertainty
in the context of evidential learning [16]. See also [17]–[19]

While evidential learning deals with estimating classifica-
tion uncertainty, our approach deals with estimating proportion
vectors associated to each data sample. We thus introduce
specifically designed losses for proportion inference. To our
knowledge, using proportion specific losses was not addressed
in the HU literature that was more focused on efficient
architecture design.

Our experimental results show that training with the pro-
posed loss a NN architecture successful for XRD classification
or HU yields to robust proportion inference.

The sequel of the paper is organised as follows. Section
II presents the proposed Dirichlet modeling for proporition
inference. Section III details our experimental setup for both
XRD and HU applications. Results and comparisons with
competing methods are presented in Section IV. We conclude
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in Section V with a brief discussion and some pointers for
future research.

II. METHODS

In the following, K ≥ 2 represents the number of classes.
We denote ∆K = {x = (x1, ..., xK) ∈ RK |xj ≥ 0, j =

1, ...,K, and
∑K

j=1 xj = 1} the K-dimensional simplex, that
is, the set of proportion vectors. We consider a training dataset
D = {(xi,yi), i = 1, . . . , ND}, where each input signal
xi lives in Rd and yi ∈ ∆K is its associated ground-truth
proportion vector. Given a similar input signal x we aim at
inferring its corresponding component proportions y using a
NN.

Classification is usually performed by maximizing the like-
lihood of a multinomial distribution parameterized by the NN
response using a softmax layer. Here we will perform pro-
portion regression maximizing the likelihood of the Dirichlet
distribution parameterized by α ∈ (0,∞)K .

We denote f(·|θ) : Rd → RK a NN with parameters θ,
and ai = f(xi|θ) ∈ RK the NN output corresponding to
the input xi. One should define the relationship between the
output vector a and the Dirichlet parameters α = ϕ(a), where
ϕ must comply with the strictly positive constraint of α. It
should also be strictly increasing such that an output vector
a with large values is mapped to a Dirichlet distribution with
low variability. As in [15], we consider ϕ(a) = ReLU(a) + 1
that satisfies both conditions. We thus associate with any input
data xi the random variable

Pi = (Pi1, ..., PiK) ∼ Dir(αi), (1)

where αi = ϕ(ai) = ReLU(f(xi|θ)) + 1. The proportion
prediction ŷi is given by the mean of the Dirichlet distribution
Dir(αi), that is,

ŷi =
αi

Sαi

∈ ∆K , with Sα =

K∑
j=1

αj .

A. Likelihood functions for proportion regression

Sections II-A1 and II-A2 introduce the two proposed losses
designed for proportion inference based on Dirichlet modeling,
then Section II-A3 presents alternative losses.

1) Mean square error & Dirichlet: From the Dirichlet
model previously introduced, we must provide a loss function
to train the NN. One can first think at minimizing the Mean
Square Error (MSE). That is for any input data xi, minimizing
the expectation of the squares of the errors between yi and Pi,
the random variable associated with the input data xi in Eq.
(1). This loss function LSE

i (θ) is expressed as follows,

LSE
i (θ) = E(∥ yi −Pi ∥2) =∥ yi − ŷi ∥2 +Var(Pi) (2)

where Var(Pi) =
∑K

j=1 Var(Pij). We will refer to this loss
as “MSE & Dirichlet”.

2) Cross-entropy & Dirichlet: An alternative is the cross-
entropy (CE) loss between yi and Pi given by

LCE
i (θ) = E

 K∑
j=1

−yij log(Pij)


=

K∑
j=1

−yij [ψ(αi)− ψ(Sαi)] ,

where ψ is the digamma function. This loss will be named
“CE & Dirichlet”.

3) Alternative losses without Dirichlet modeling: We also
consider three alternative losses that do not rely on likelihood
maximization for Dirichlet variates. The first, named “MSE”,
computes the naive MSE using the positive part of the network
output: Li =∥ yi − ReLU(ai) ∥2. The second, “CE &
SoftMax”, evaluates the cross-entropy using the Softmax
of the network output Li = −

∑K
j=1 yij log(Softmax(aij)).

And finally the third, “MSE & proportion”, defines the loss
Li =∥ yi− ŷi ∥2, where ŷij =

αij

Sαi
, and αi = ReLU(ai)+1.

This loss corresponds to the first term of Eq. (2), that is the
“MSE & Dirichlet” loss without the variance term.

B. Evaluation metrics

Let T = {(xi,yi), i = 1, . . . , NT } denote the testing set,
where NT is the number of labeled data in each data set.
To quantity the performance of the networks, we consider
three metrics: the standard Root Mean Square Error (RMSE),
together with the Mean Maximum Absolute Error (MMAE)
and the Rate of Recovered Support (RRS) defined respectively
as,

MMAE =
1

NT

∑
(xi,yi)∈T

max
j∈{1,...,K}

|ŷij − yij |,

RRS =
1

NT

∑
(xi,yi)∈T

1(supp(yi) = suppε(ŷi)),

where supp(y) = {j ∈ {1, . . . ,K}, y > 0} and suppε(y) =
{j ∈ {1, . . . ,K}, yj > ε}, for ϵ ∈ (0, 1). In the following
experiments we will set ϵ = 0.01, that is, a class is considered
present if its estimated proportion is greater than 1%.

III. EXPERIMENTAL SETUP

A. Mineral phase identification from X-Ray diffraction

We recall here that given a XRD patterns, we aim to obtain
the proportion of each mineral phases of the crystal. First,
we briefly describe those XRD patterns [20]. The elastic
scattering of photoelectrons from an X-ray beam results in
a scattered beam that is most commonly measured as a
function of the scattering angle θ. The intensity of the scattered
beam depends on three main components: the polarization
factor, the structure factor, and the interference function [20].
Other parameters influence the diffracted intensity, for example
atomic agitation, which is here accounted for by the Debye-
Waller factor (isotropic agitation factor).
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Fig. 1: Examples of XRD patterns: One from the simulated
database (22% Calcite, 74% Gibbsite, 0.03% Dolomite, 0%
Hematite), and one from real experiments (80% Calcite, 20%
Gibbsite, 0% Dolomite, 0% Hematite).

In order to train a NN able to infer the mineral phases
proportions, a synthetic database of XRD patterns was gener-
ated. We used the simplest system of equations by assuming
that the crystals are perfectly 3D-ordered, have isotropic size,
and have no lattice defect, resulting in 6000 XRD patterns
of pure material for the phases Calcite [21], Dolomite [22],
Gibbsite [23] and Hematite [24]. Then, 15000 XRD synthetic
patterns of mixtures were created by combining one to four
of the different mineral phases with a given proportion vector.
Examples of XRD patterns are displayed in Fig. 1.

In addition, several real XRD patterns were acquired. Phase
quantification from XRD data in real material samples usually
requires a preliminary step of qualitative identification. We
recorded 24 XRD patterns on pure minerals and on assem-
blages that are mixtures of the same mineral phases as in the
synthetic dataset.

XRD patterns were acquired on micronized powders, with
a Bruker D8 diffractometer, equipped with a LynxEye XE
detector and a Cu anode (λ = 1.5418Å). The proportions
of each phase was quantified by successive weightings. Data
were collected in a continuous scan mode, averaged every 0.04
◦2θ, and modelled with the Profex interface to the BGMN
software [1].

We trained a convolutional NN (CNN) following the archi-
tecture proposed in [25] for dimensionality and space group
classification from XRD patterns. This CNN contains three
convolutional layers followed by two linear layers (see [25] for
the full details). For each of the five loss functions introduced
in Section II, we trained the CNN five times using 100 epochs
(with the same initialization) and retained the most efficient
network in terms of MMAE on the validation among all
epochs. This is done to ensure a fair comparison of the best
performances of the losses we investigate since we observed
that those including a MSE term sometimes remains blocked in
local minima. This can surely be solved by an adapted training
policy or the use of normalization layers, but we chose to limit
the complexity of the training procedure to avoid bias towards
one of the losses.

(a) Jasper Ridge (b) Urban

Test

Validation

Train

Fig. 2: Splits of the hyperspectral images for training and
testing (RGB images obtained by averaging spectral bands).

B. Hyperspectral images

HU deals with inference proportion from spectral signatures.
We used the Jasper Ridge and Urban images to conduct
experiments on real data for which a ground-truth is provided1.
The Jasper Ridge image has four endmembers: Road, Soil,
Water and Tree. We analyzed a sub-image of 100x100 pixels
for which the ground-truth has been established. On this
image, the original spectra have 224 channels, but atmospheric
effects and water vapour affect some spectral bands. Hence
we reduced the data to 198 channels. Urban is a 307x307
pixels image with a spectral length of 162 (some channels
were removed as for Jasper Ridge). We used the six ground-
truth classes (Asphalt, Grass, Tree, Roof, Metal and Dirt). We
splitted each image into three parts to constitute the training,
validation and tests sets as shown in Fig. 2, in order to have
a test set that is as independent as possible from the training
set.

We used the 1D CNN architecture proposed in [13] for
abundance estimation. As for the XRD experiment, the CNN
was trained five times for each loss, and the reported results are
the ones for the model with minimal MMAE over all epochs
on the validation set.

IV. NUMERICAL RESULTS

A. Results on synthetic and real XRD data

The performance of the different trained models on the
synthetic and the 24 real XRD patterns are reported in Table I.

For XRD simulated data, the loss functions MSE & Dirich-
let and MSE & prop. provide the best results. It is worth
mentioning that comparison with Rietveld refinement (detailed
below) was not performed since the numerical approaches for
building simulated data are, for 3D-ordered structures, similar
to the calculation and hence minimization approach of the
Rietveld software.

Analysing real XRD patterns allows to compare our results
with the Rietveld refinement [1]. Two types of refinements
were performed: in the first one, all geometrical and crys-
tallographic parameters were allowed to vary. In the second,
the refinement parameters were limited to the same as those

1Retrieved from https://rslab.ut.ac.ir/data
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TABLE I: Results for XRD (measures in percentage)

Simulated data Real data

Loss function RMSE↓ MMAE↓ RRS↑ RMSE↓ MMAE↓ RRS↑

MSE & Dirichlet 3.67 3.49 87.1 6.07 8.23 91.7
CE & Dirichlet 4.57 4.21 90.8 9.10 11.0 83.3
CE & Softmax 4.75 4.36 92.6 7.22 8.12 95.8
MSE 4.18 4.81 86.2 5.20 7.77 83.3
MSE & prop. 3.74 3.54 88.5 5.53 7.26 87.5

Stand. Rietveld Depends on the sample 1.31 2.07 100
Const. Rietveld (see text IV-A) 1.74 3.12 100

considered when creating the database (norm of lattice vectors,
Debye-Waller factors, and isotropic crystallite size). The first
refinement is hence assumed to be representative of the state
of the art while the second one allows for the most objective
comparison with our NN method. However, some instrument
parameters had to be left floated to allow for a proper
functioning of the Rietveld refinement, namely a background
determination function and a slight z sample displacement.
It is hence not suprising that both standard and constrained
Rietveld refinements are more efficient than our methods since
the network was only trained on simulated data and Rietveld
refinement had slightly more refinement parameters and aims
at minimizing the root mean square error. Despite this, the
losses using MSE provide satisfying performance. This con-
firms the interest of a NN-based method for XRD analysis.
Indeed real data are affected by uncertainties from instrumental
parameters (e.g. detector efficiency, source brightness, etc.).
This makes the analysis of these real data harder than that of
simulated data and also explains the performance gap, which
is however of limited amplitude.

B. Results on hyperspectral unmixing data

The five proposed loss functions introduced in Section II
were compared with three competitive methods. The first one
is the SUnSAL algorithm [8], a constrained sparse regression
method2 based on the alternating direction method of multipli-
ers. It allows to obtain the fractional abundance of components
in each pixel of an hyperspectral image, without using ground-
truth data. We also compare our method with two deep-
learning based methods: HyperAE3 [26] and UnDIP4 [27].
HyperAE proposes a NN autoencoder that extracts both the
endmembers spectral signatures and the fractional abundances
in each pixel. UnDIP is a two-step algorithm that first ex-
tracts the endmembers using a geometric method, and second
estimates the abundances using deep image prior.

Table II summarizes the results on both Jasper Ridge and
Urban images. Results obtained on the Jasper Ridge basis
highlight the effectiveness of the proposed two loss functions,
namely MSE & Dirichlet and MSE & prop. The three other
losses also perform well on the error measurements and the
RRS. The results on the Urban dataset are quite similar

2https://github.com/Laadr/SUNSAL
3https://github.com/dv-fenix/HyperspecAE
4https://github.com/BehnoodRasti/UnDIP

TABLE II: Results for both hyperspectral images

Urban Jasper Ridge

Loss function RMSE↓ MMAE↓ RRS↑ RMSE↓ MMAE↓ RRS↑

MSE & Dirichlet 4.50 5.68 55.7 2.48 2.34 80.3
CE & Dirichlet 5.44 7.77 51.1 2.90 3.09 77.8
CE & Softmax 4.95 6.48 43.7 4.03 3.87 59.5
MSE 5.07 8.13 59.7 3.29 4.21 74.0
MSE & prop. 4.17 5.45 56.1 2.34 2.37 80.3

SUnSAL 19.7 28.89 17.5 7.81 7.83 51.4
HyperAE 36.3 54.79 6.73 25.9 32.18 37.5
UnDIP 28.1 52.0 0.68 18.8 22.7 15.1

(a) Tree (b) Water (c) Dirt (d) Road

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.1 0.2 0.3 0.4 0.5 0.6

Fig. 3: For each class of Jasper Ridge: ground-truth (GT) (1st

row), absolute difference between GT and prediction resp. with
Dirichlet & MSE (2nd row), MSE & prop (3rd row), SUnSAL
(4th row) and UnDIP (5th row).

to those obtained on Jasper Ridge, MSE & Dirichlet and
MSE & prop. provide the best results in terms of minimum
errors. For both images, the SUnSAL, UnDIP and HyperAE
methods perform relatively poorly compared to the proposed
NN models.

These results can be illustrated by comparing the ground-
truth abundances and the predicted ones. Fig. 3 depicts the
ground-truth (first row) and the absolute difference between
this truth and the prediction obtained with the two best
performing loss functions MSE & Dirichlet (second row) and
MSE & prop. (third row) as well as the UnDIP and SUnSal
methods (resp. in the fourth and fifth rows). One can observe
that the results are quite good and close for both proposed
losses. As expected, the areas where the predictions reach
30% of error are the borders between different endmembers. In
comparison, the SunSal method produces larger errors in the
same areas while the UnDIP method outputs wrong predictions
for the Dirt and Road classes.

V. CONCLUSION AND PERSPECTIVES

We have proposed a NN training loss based on Dirichlet
modeling that allows to quantify phases in a mixture. The
proposed method has been successfully applied on synthetic
and real XRD and HU data. One of the strengths of our method
is its ease of use. Indeed there is no need to create a specific
architecture for the network. One can use a validated NN that
is appropriate for the studied data, and train the model with
the Dirichlet loss function for proportion inference.
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In addition, to our knowledge, machine learning based
approaches for XRD analysis are limited and do not allow an
exact estimate of proportion. Those approaches are reduced
to classifications problems, by identifying space groups and
crystal dimensionality [5], [25], or by sorting the percentages
of abundance of the different classes [4].

Therefore, these methods lead to results that cannot be used
operationally in a mineralogy laboratory. On the contrary,
the method we propose combines the advantages of a deep
method while providing results close to those of Rietveld. We
believe that the remaining performance gap between Rietveld
and our method stems from a combination of more refinement
parameters for the Rietveld method and the difference between
the real and simulated data.

Last but not least, our NN-based alternative opens the
way for the automatic analysis of a large amounts of signals
involving in settings where the Rietveld algorithm generally
fails, e.g. when a large amount of phases is involved. This
would undoubtedly be a key advantage in the case of XRD-
computed tomography [2], which typically contains millions
of XRD patterns. Current work is undergoing in this direction.
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