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Abstract—Biogenic Volatile Organic Compounds (BVOCs)
emitted from the terrestrial ecosystem into the Earth’s atmo-
sphere are an important component of atmospheric chemistry.
Due to the scarcity of measurement, a reliable enhancement
of BVOCs emission maps can aid in providing denser data
for atmospheric chemical, climate, and air quality models. In
this work, we propose a strategy to super-resolve coarse BVOC
emission maps by simultaneously exploiting the contributions
of different compounds. To this purpose, we first accurately
investigate the spatial inter-connections between several BVOC
species. Then, we exploit the found similarities to build a Multi-
Image Super-Resolution (MISR) system, in which a number of
emission maps associated with diverse compounds are aggre-
gated to boost Super-Resolution (SR) performance. We compare
different configurations regarding the species and the number of
joined BVOCs. Our experimental results show that incorporating
BVOCs’ relationship into the process can substantially improve
the accuracy of the super-resolved maps. Interestingly, the best
results are achieved when we aggregate the emission maps
of strongly uncorrelated compounds. This peculiarity seems to
confirm what was already guessed for other data-domains, i.e.,
joined uncorrelated information are more helpful than correlated
ones to boost MISR performance. Nonetheless, the proposed work
represents the first attempt in SR of BVOC emissions through
the fusion of multiple different compounds.

Index Terms—BVOC, Biogenic Emissions, Isoprene, Super-
Resolution, Multi-Image Super-Resolution

I. INTRODUCTION

Many chemicals are produced by terrestrial ecosystems,
including volatile or semi-volatile compounds, and released
into the atmosphere. Among all these chemicals, BVOCs
have been recognized as significant contributors to air quality
and climate change due to their large emission amount and
high reactivity [1]–[4]. For instance, BVOCs are important
precursors of ozone and secondary organic aerosols, which can
negatively impact human health and vegetation growth [5], [6].

To assess air quality and climate conditions, it is cru-
cial to accurately estimate the amount of BVOC emissions,
both historically and in the present and future [2], [7], [8].
Although various ground-based techniques are available to
sample BVOC emissions across different scales [6], [8], the
available measurements are limited in space and time, making
them less suitable for reliably simulating atmospheric, climate,
and forecasting models.

To tackle the lack of measurements, we propose to increase
the spatial resolution of BVOC emissions by refining a coarser
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grid. This problem falls into the general category of image SR
tasks, which aim at enhancing the pixel resolution of a digital
image. The goal is to find a suitable mapping between the Low
Resolution (LR) image at hand and its corresponding High
Resolution (HR) version in a way that ensures high-quality
upscaling.

Plenty of work has been done to enhance classic 8-bit
imagery like photographs or medical imaging. Several ap-
proaches have been proposed, and Deep Learning (DL)-based
methods have shown to outperform classical methods [9]
thanks to their ability to learn spatial features from huge
datasets [10]. However, SR of 2D data linked to physical
measures (like BVOC emissions) is less explored and not
straightforward. Data involving physical acquisitions are al-
ways connected with a meaningful measurement unit; more-
over, they might report a sparse nature, numerous outliers, and
wide dynamic ranges. Therefore, the modification of standard
SR techniques is usually required [11], [12].

The majority of the proposed works mainly exploit infor-
mation coming from a single observation [12]–[16], i.e., the
tackled problem can be formulated as a Single-Image Super-
Resolution (SISR) task. Nonetheless, combining information
from multiple different observations belonging to the same
or similar domains proved a useful strategy to increase SR
performance [17], [18]. This converts into a MISR task. For
example, authors in [19] focused on improving the resolution
of sea surface temperature by exploiting both optical and
thermal images. A combination of information related to
sea surface temperature, sea surface wind, and other remote-
sensing products was proposed in [20] to reconstruct a denser
ocean subsurface salinity. Authors of [21] exploited a pollution
field’s external factors and spatial-temporal dependencies to
increase its resolution. In [22], SR of precipitation data was
performed leveraging HR topography maps and various LR
maps of sea level pressure and air temperature.

In this paper, we propose to fuse the emission maps of
different BVOCs to provide denser emission maps. In partic-
ular, multiple LR emission maps are combined together and
processed through a Neural Network (NN) to super-resolve
emissions of a specific compound. To do so, we thoroughly
explore the inter-connections between several BVOC species,
investigating their structural similarities and spatial correla-
tions. In our experiments, we compare various configurations
regarding the species and number of aggregated compounds
used for facing the proposed MISR objective. We show that a
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Fig. 1: Spatial inter-connection of multiple BVOC emission maps.

specific selection of BVOC species based on their related inter-
connection can provide a performance gain in SR of emission
maps. Interestingly, the aggregation of less correlated BVOCs
proves more beneficial than the joint contribution of related
compounds, similar to what was guessed in [19] for different
domain data.

II. BVOCS INTER-CONNECTION

The emissions related to different BVOCs are often inter-
related, and changes in the emission rate of one compound
can affect the emission rate of others. Several studies ex-
plored the complex underlying mechanism which governs
these correlations [7], [23]. In principle, BVOC emissions
strongly vary depending on the species of vegetation and
on environmental, meteorological, and physiological factors.
Moreover, environmental stress phenomena can induce other
diving factors [24], [25].

In this section, we investigate the spatial inter-connection
of BVOC emission maps related to multiple compounds.
To do so, we select BVOC emission maps from the most
recent global coverage biogenic emission inventory [26]. This
inventory provides emissions from 25 different compounds,
including isoprene, monoterpene, sesquiterpene, methanol, and
other main BVOC species.

Given a reference biogenic compound, we explore its spatial
inter-connection with other compounds by computing the Pear-
son Correlation Coefficient (PCC) and the Structural Similarity
Index Measure (SSIM) between their emission maps. We al-
ways compare emission maps related to the same geographical
area and acquisition date to obtain reasonable comparisons.

Fig. 1 depicts the computed inter-connection measures.
Given the intrinsic commutative property of SSIM and PCC,
the upper triangular region reports the SSIM, and the lower
triangular region reports the PCC. The elements along the
diagonal always equal 1 for both metrics, since the reference
and the compared compounds are the same.

It is worth noticing that PCC and SSIM are in accordance
one another, i.e., high PCC corresponds to high SSIM as well,
and vice versa. Emission maps of different compounds actu-
ally contain some inter-correlations, i.e., the inter-connection
matrix does not present a perfect diagonal behavior.
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ÎHR1

(b) Deployment.

Fig. 2: The proposed Multi-BVOC Super-Resolution (MBSR) method: (a)
training and (b) deployment phase.

These preliminary investigations motivate our proposed
approach, that is, the joint exploitation of different BVOC
emission maps for super-resolving LR maps. Following prior
works in MISR over satellite-derived physical measures [19],
[20], [22], we believe that the related cross-information among
different compounds enables to boost performance with re-
spect to the simple SISR scenario. In the next section, we
present the proposed Multi-BVOC Super-Resolution (MBSR)
strategy which is built upon this intuition.

III. MULTI-BVOC SUPER RESOLUTION

The proposed work for MBSR aims at exploiting spatial
inter-connections between different BVOCs to super-resolve
Low Resolution (LR) emissions. Differently from Single-
Image Super-Resolution (SISR) tasks, we tackle a Multi-Image
Super-Resolution (MISR) problem, in which a High Resolu-
tion (HR) emission map of a reference BVOC is recovered by
exploiting multiple LR emission maps of different BVOCs.

Following the considerations done in Section II, we select
C compounds according to their spatial inter-connections,
stacking their emission maps in a set defined as {ILRc

}, c =
1, ..., C. The set includes the reference BVOC LR emission
ILR1 associated with the index c = 1 and other joined
compounds’ LR emissions {ILRc}, c = 2, ..., C. The reference
compound emission ILR1 is the one we want to super-resolve.
We propose to estimate an HR emission map as

ÎHR1
= T −1

1 (N ({Tc(ILRc
)})), (1)

where {Tc(·)} collects C different data transformations Tc(·),
each one applied to the LR emission ILRc

of the c-th com-
pound, N (·) is a NN operator, and T −1

1 (·) is the inverse
transformation related to the reference BVOC, with c = 1.

Fig. 2 depicts a sketch of the proposed MBSR methodology.
We model {ILRc} and {Tc(ILRc)} as tensors with size of
H ×W × C, where H and W represent height and width of
the emission maps and C the number of compounds adopted
for performing MBSR. Matrices IHR1

and its estimation ÎHR1

have size αM × αN , with α > 1 indicating the super-
resolution factor (i.e., how much we increase the resolution).
The training phase involves ({ILRc}, IHR1 ) emissions as input
(see Fig. 2a). At testing stage (see Fig. 2b), given a set of C
LR emissions {ILRc

}, we estimate ÎHR1
.
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In our past investigations [12], we showed that a suitable
data transformation is required to deal with BVOC emissions
since they are characterized by sparsity, extremely small val-
ues, and wide dynamic ranges (from 10−30 to 10−9 [kg/m2s]).
As a matter of fact, BVOC emissions can present many outliers
due to the large spatial diversity of the environmental factors
driving the emission process, such as meteorology, type of
vegetation, seasonal cycle, and atmospheric composition [12],
[26]. For this reason, we adopt a set {Tc(·)} of non-parametric
transformations that force emission values to follow a uniform
distribution between 0 and 1 [12], [27]. Notice that these
transformations are compound-specific, i.e., every Tc(·) strictly
depends on the c-th compound since it is based on statistical
information extracted from its emissions.

It is worth noticing that the choice of a NN as SR operator
is not only motivated by the superior performances of novel
DL-based methods with respect to classical approaches. In a
MISR context, the advantage of solutions leveraging DL is
that these do not require to discover a formal relationship
between the different stacked BVOC emission maps. The
training process benefits from any advantageous connections
existing between multiple distinct types of input images [19].
In particular, we exploit the Second-order Attention Network
(SAN) architecture [28], which can be considered the state-
of-the-art in this field [12].

IV. EXPERIMENTAL ANALYSIS

A. Dataset Collection

To perform our investigations, we use the most up-to-date
and highest-resolution global coverage biogenic emission in-
ventory available in the literature [26]. This inventory provides
emissions from various BVOCs, covering the entire Earth’s
surface for the period of 2000-2020 at a high spatial resolution
of 0.25◦×0.25◦, which is approximately 28km×28km for each
cell in continental regions.

As suggested in [12], we slice each emission map, which
has a grid of 1440 × 720 cells, into non-overlapping patches
of 64 × 64 cells. This step makes the computations more
manageable and enables to assume minimal radial distortions
due to the Earth’s curvature. For every BVOC, we end up with
81957 distinct patches that we consider as HR references. The
associated LR patches are generated by performing bicubic
downsampling, resulting in 16 × 16 emission maps. Thus,
we aim at super-resolving LR emission maps with 1◦ × 1◦

spatial resolution into HR emission maps with 0.25◦ × 0.25◦

resolution, which corresponds to a scale factor of α = 4. We
adopt this factor since it is more challenging with respect to
smaller ones, as we found in our previous investigations [12].

Isoprene is the most prevalent and impactful BVOC in
the inventory, accounting for approximately half of the total
BVOC emissions [3]. Based on this, we focus on the SR of
isoprene emission maps. To solve the MBSR task, we create
{ILRc

} tensors by stacking one LR patch of isoprene and LR
patches related to the same geographical area but to different
BVOCs. Our final dataset is defined as D = {{ILRc}i, IHR1i

},
for c = 1, ..., C and i = 1, ..., 81957. To select the joined

Fig. 3: Example of most correlated and uncorrelated BVOCs with respect to
isoprene (reference BVOC).

compounds, we exploit the inter-connection metrics shown
in Section II. In Section V, we provide more details on
the selected compounds, comparing different experimental
scenarios.

B. Training Setup

As reported in [12], each compound needs a different data
transformation based on statistical information derived from its
HR emissions. To estimate the transformation set {Tc(·)}, c =
1, ..., C, we follow the experimental setup shown in [12].

We divide our dataset into train, validation, and test sets
with 70/20/10 percentage amount, respectively. We combine
the ADAM optimizer with the Cosine Annealing learning rate
scheduler [29], setting the initial learning rate to 10−4, with
a minimum value of 10−7. We set a maximum number of
3 · 105 iterations, validating the model each 103 iterations and
stopping the algorithm if the validation loss does not further
improve after 10 validation steps.

V. EXPERIMENTAL RESULTS

A. BVOC Inter-Connection Analysis

Our main goal is super-resolving isoprene emission maps,
corresponding to index 11 in the BVOC inter-connection
matrix shown in Fig. 1. Due to the substantial accordance
between PCC and SSIM, we select the 3 most similar and the
3 least similar compounds based on their related SSIM.

From higher to lower, acetaldehyde, sesquiterpenes and,
formaldehyde are the 3 best correlating compounds with
isoprene. On the contrary, the 3 less correlated ones are MBO
(2-methyl-3-buten-2-ol), methanol, and β-pinene. Fig. 3 shows
an example of the spatial coherence between the reference
compound (i.e., isoprene) and the most and least correlated
compounds.

Vegetation emits all the selected compounds, and some
are also partly products of the isoprene’s oxidation in the
atmosphere. In line with past works [23], [30], we found
that the most inter-connected compounds are those influenced
by similar environmental factors since similar plant species
produce them. On the contrary, the compounds exhibiting a
fairly low inter-connection are mainly produced by isoprene’s
oxidation [31]. We believe that these results are corroborated
by the fact that oxidation phenomena are closely linked to
atmospheric chemistry and meteorology, thus weakly related
to geographic topology such as vegetation type.
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Fig. 4: Example of emission SR. (a) is the original HR isoprene emission map IHR1
; (b) shows its related LR version ILR1

; (c), (d), (e) are the SR emissions
ÎHR1 for the cases C = 2, C = 3 (best case) and C = 4, respectively; (g), (h), (i) their relative absolute error, computed as |IHR1 − ÎHR1 | (the brighter,
the higher); (f) reports the histogram of the emission values of (a) (IHR1

) compared with the best super-resolved emission map in (d), (̂IHR1
).

TABLE I: SR results for connected (Dcon) and unconnected (Dunc) com-
pounds. For C = 2, 1st and 2nd configurations denote the pairs (isoprene,
acetaldehyde) and (isoprene, sesquiterpene) for Dcon, and the pairs (isoprene,
MBO) and (isoprene, methanol) for Dunc, respectively. In bold, the best
achieved results.

C = 2 C = 3 C = 4
Dataset SSIM / NMSE [dB] SSIM / NMSE [dB] SSIM / NMSE [dB]

Dcon
1st 0.988 / −21.38

0.987 / −20.45 0.986 / −20.79
2nd 0.986 / −20.92

Dunc
1st 0.988 / −21.09

0.989 / −21.93 0.986 / −20.51
2nd 0.987 / −21.31

B. Compound Selection

In this section, we investigate how much leveraging the
inter-connection between compounds benefits the SR process.
To this purpose, we create different datasets based on the
compound inter-connections, stacking multiple emission maps
along the channel dimension of the tensors, as explained
in IV-A. For brevity’s sake, we reduce the potential com-
pounds’ combinations by selecting only strongly connected
or poorly connected ones. The datasets of compounds that
show a strong inter-connection with isoprene are generally
denoted as Dcon, while Dunc indicates the datasets including
less connected compounds.

For both Dcon and Dunc categories, we consider the scenarios
in which LR emission maps of 2, 3, or 4 different compounds
are aggregated to estimate HR emission maps of isoprene.
For the case C = 2 (i.e., when 2 compounds are joined),
we investigate two different configurations that correspond to
joining isoprene with either acetaldehyde or sesquiterpenes in
the Dunc scenario, and to joining isoprene with either MBO
or methanol in the Dunc scenario. The case C = 3 aggregates
to isoprene both acetaldehyde and sesquiterpenes in the Dunc
scenario and both MBO and methanol in the Dunc scenario.
Finally, C = 4 considers the 3 most correlating BVOCs for
Dcon and the 3 least correlating BVOCs for Dunc.

Table I shows the achieved results in terms of average SSIM

and Normalized Mean Squared Error (NMSE), where NMSE
is defined as the MSE computed between IHR1 and ÎHR1 ,
normalized by the average of I2HR1

.
All configurations return good results. There are no re-

markable differences between the configurations related to
C = 2, i.e., there is not a specific compound which reveals
more advantageous when paired with isoprene. On average,
the configurations associated with C = 4 report the worst
results. This might be due to some difficulties encountered
by the training process in handling too many different data,
thus compromising convergence. On the other hand, the
proposed MBSR achieves a remarkable boost in using two
additional uncorrelated compounds. In specific, SR benefits
from information extracted from isoprene and the two mostly
uncorrelated compounds, i.e., when C = 3, dataset Dunc.

We believe the spatial difference in the emission patterns
favors extracting a distinctive feature by the NN, enabling
to enhance the SR performance. Similar considerations were
reported in [19], where the authors found that adding com-
plementary information, even though less correlated with the
data to be super-resolved, proved helpful for improving the
SR results. Contrarily, the authors noticed that a positive
correlation might result in redundancy which does not give an
improvement in performance, and our achieved results seem
to confirm this behaviour.

Fig. 4 shows examples of the proposed MBSR considering
different configurations. In particular, we depict results for
Dunc in scenarios C = 2, 3, 4 (see Figs. 4c-e). To enhance
the details, the emission maps correspond to cropped versions
of the original emission patches. At the same time, NMSEs
are referred to the entire images, to be comparable with the
results in Table I.

It is worth noticing that the best configuration of Table
I, i.e., Dunc and C = 3, guarantees excellent results, espe-
cially in areas of high emission values. This can be seen
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by comparing the absolute reconstruction errors associated
with diverse configurations, computed as |IHR1 − ÎHR1 | (see
Figs. 4g-i). In Figs. 4g and 4i, we can observe that higher
deviations are reached at the areas with greater emission
of the compound. This behavior is much more limited for
the best configuration result shown in Fig. 4h. For a more
detailed comparison, Fig. 4f compares the histograms of the
ground-truth and of the estimated emission map through the
best configuration, highlighting the significant reconstruction
quality of the proposed methodology.

VI. CONCLUSIONS

In this paper, we proposed the Multi-BVOC Super-
Resolution (MBSR) method, which combines multiple bio-
genic compounds to super-resolve coarse emission maps. To
the best of our knowledge, there are no prior works inves-
tigating Multi-Image Super-Resolution (MISR) problems on
BVOC. Nonetheless, SR of BVOC emissions is paramount to
fill the lack of measurements for reliable atmospheric, climate,
and forecasting models simulations.

To determine which and how many BVOCs should be
combined, we conducted careful investigations on the spatial
inter-connection between the most abundant BVOCs in nature.
Then, we leveraged these inter-connections to drive the SR
process. We experimented various configurations, aggregating
the emission maps of different number of BVOCs with high
and low spatial correlation. Interestingly, we found that joining
poorly correlated compounds can effectively boost the SR per-
formance, preserving spatial patterns and fine-scale structures.

Future works will concern the comparison of our proposed
strategy with the state-of-the-art SR techniques for multispec-
tral images, in which several related images are super-resolved
simultaneously.

In addition, we will investigate the adoption of SR methods
that embed known properties of the underlying physical system
behind the SR process, and enforcing strict physical agreement
and consistency [11] between LR and super-resolved data.
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