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ABSTRACT
Non-verbal expressions of speech are used to understand
a spectrum of human behaviour parameters; one of them
being confidence. Several speech representation techniques,
from hand-crafted features to auto-encoder representations,
are explored for mining such information. We introduce
a deep network trained with 100 speakers’ data for the
extraction of breathing patterns from the speech signals. This
network gives an average Pearson’s correlation coefficient
of 0.61 and a breaths-per-minute error of 2.5 across 100
speakers. In this paper, we propose the novel use of speech-
derived breathing patterns as the feature set for the binary
classification of confidence levels. The classification model
trained with the data from 51 interview candidates gives an
average AUC of 76% in classifying the confident speakers
from the non-confident ones using breathing patterns as
the feature set. On comparing this performance with that
of Mel frequency cepstral coefficients and auto-encoder
representations, we observe an absolute improvement of 8%
and 5% respectively.

Index Terms—speech-breathing, affective computing, time-
series analysis, computational paralinguistics, human confi-
dence classification

I. INTRODUCTION

In the context of this paper, human confidence (or self-
confidence) is the confidence felt and expressed by an
individual in a one-on-one discussion with an interviewer.
As per the DeGroot–Friedkin model explained by Jia et al.
in [1], an individual’s self-confidence varies in a discussion
having a sequence of topics. The state of confidence and the
breathing process have an impact on each other. As seen in
[2], breathing practises have helped pregnant women gain
confidence while they experienced labour pain. Similarly, in
[3], individuals with high self-rated apprehension are found
to have more pauses, longer breath groups, and more inter-
jections in their speech. To capture the breathing patterns,
a dedicated sensor called the respiratory belt is connected

to the chest, and its transducer converts the breathing-
based chest movements into time-series breathing patterns.
However, this is an intrusive mechanism and depends on
expensive equipment. Hence, we propose the use of speech,
which has the benefit of a non-intrusive approach to captur-
ing the data.

II. PREVIOUS WORK
For the extraction of breathing patterns from speech, a va-

riety of speech features are explored, such as Mel-frequency
cepstral coefficients (MFCCs), energy, zero-crossing rate,
and spectral slope in [4], cepstrograms in [5], and log
Mel-spectrograms in [6]–[9]. The authors of [8] have also
explored the use of the raw speech waveform fed to a
deep network. In [6], a maximum Pearson correlation (r-
value) of 0.47 is achieved with long-short-term memory
(LSTM) networks for a segment duration of 4 seconds. In
[7], 40 healthy subjects’ data is analysed for the detection of
breathing rate using LSTM models, giving an r-value of 0.42.
The Computational Paralinguistics challengE (ComParE)
Breathing Sub-Challenge organised at Interspeech 2020 [10]
had a baseline Pearson correlation of r = 0.50 on the
development, and r = 0.73 on the test data set. The winners
of this challenge [11] reported r = 0.76 between the speech
signal and the corresponding breathing values of the test set.
In all these studies, less than 50 subjects participated, and a
maximum r-value of 0.76 is achieved between the breathing
patterns and speech signals.

For the detection of confidence expressions from speech
signals, Jiang and Pell analysed the impact of human con-
fidence levels on the speech acoustics in [12], [13], and
[14]. Speech parameters such as fundamental frequency,
amplitude, speech rate, duration, and harmonic-to-noise ratio
are found useful in classifying the confidence levels with
an accuracy of 0.62 for the speaker-independent analysis.
Joshua et al. in [15] validated the influence of vocal speed,
intonation, and pitch on the perception of confidence ex-
pressed on more than 300 students’ speech data. Specifically,
increased speech rate, falling intonation, and lowered pitch
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are found to indicate high speaker confidence. Sabu et
al. in [16] have studied the confidence expressions among
195 children of age group 10 − 14 years while reading a
paragraph. The authors report an accuracy of 65% for three-
class classification and 82% for binary classification (high
and medium combined as high class) using acoustic features
such as pause, pitch, and speech rate using a random forest
regressor. This analysis is suitable for a specific context of
evaluating the students’ comfort with the language and not
for assessing the self-efficacy of a speaker while responding
spontaneously to an unknown scenario or question.

In this paper, we propose the novel approach of using
speech-derived breathing patterns (SDBP) as a feature set for
the classification of confident speakers from non-confident
ones. MFCCs are the most widely used feature sets across
all the analysis associated with speech. Auto-encoder-based
representation is the most recent technique that has been
adopted across multiple use cases of speech analyses. Hence,
we compare the performance of SDBP with theirs.

III. DATA ACQUISITION
Figure 1 illustrates the separate collection of data for both

tasks: deriving breathing patterns and capturing individuals’
confidence expressions from speech.

III-A. Speech-Breathing Data Collection
We appointed 100 students (69 male;31 female) of the age

group 18 to 23 years to participate in our study. ADInstru-
ments’ respiratory belt transducer is used for recording the
ground truth breathing patterns, and a condenser microphone
is used for recording the simultaneous speech signals. The
PowerLab data acquisition system’s two channels are con-
nected to these two recording devices to capture the time-
synchronised signals. The transducer is positioned on the
chest (4 centimetres (cm) below the collarbone), and the
head-mounted mic is placed at a distance of approximately
4 cm from the mouth. The participants are seated in a chair
and given approximately 2 minutes to relax before starting
the experiment. They read the List 2, List 3, List 7, List
8, List 9, and List 10 of the Harvard sentences. Harvard
sentences are phonetically balanced sentences using specific
phonemes at the same frequency as they appear in English
[17]. Each participant takes around 2 − 3 minutes to read
these sentences. Both the signals, breathing and speech, are
sampled at 40 kHz; speech is downsampled to 16 kHz and
breathing to 50 Hz. Breathing values are divided by the
maximum value to scale them in the range of −1 to +1.

III-B. Speech-Confidence Data Collection
A study is designed to collect data from 51 individu-

als in the age group 22 − 30 years. The data collection
happens over a video phone call with a sampling rate of
16 kHz. The candidates are briefed about the data collection
procedure. We get their consent to record their audio-
visual responses. An interview session with a candidate
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Fig. 1. An overview of the approach presented in this paper.
SBreathNet: the deep regression model for the extraction of
breathing patterns from speech signals. SDBP is used as a
feature set for the classification of confidence classes.

comprises five questions. The questions are selected to
induce varying levels of confidence, such as a question
to “Describe yourself” (question number 1) to capture a
confident response and a question about “What would you
do in an unimaginable situation” (question numbers 4 and
5) to capture non-confident responses. The candidates do not
know the questions before they participate in the session, and
hence, spontaneous responses are captured from them. All
the responses are labelled by the speakers themselves and
three more researchers in two categories of confidence: –
confident or non-confident–. The group of annotators has two
females and one male; they are all in the age range of 30 to
40; conduct behavioural studies as their profession, and are
Indians. The final label is calculated using a majority voting
approach; there is one label for every audio-visual response.
51 individuals participated; hence, we get a total of (51 X 5)
255 responses, each with a duration ranging between 10−30
seconds. For all the responses, at least two researchers’ labels
match those given by the candidates themselves. Hence, for
all the responses, we get a majority vote of three out of four.
There are 37 (14% of the total responses and 36% of the
responses to questions 4 and 5) non-confident responses and
218 confident responses. These statistics reflect the difficulty
in capturing non-confident responses from the candidates in
a study setup.

IV. METHODOLOGY
As shown in Figure 1, the deep regression model that

extracts the breathing patterns from the speech signals is
referred to as SBreathNet. This network is trained on the data
described in Section III-A and infers the breathing patterns
for the data mentioned in Section III-B. The SDBPs are then
used as a feature set for the classification of confident and
non-confident speech using a RandomForest classifier.

IV-A. Speech Representations
As depicted in Figure 2, four different speech represen-

tation techniques – MFCCs, time-domain features, phase-
domain decomposed speech components, and the raw speech
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Fig. 2. Four different speech representation techniques:
MFCCs, time-domain features, phase decomposed compo-
nents, and raw speech frames, are used across three ap-
proaches for the classification of confident and non-confident
responses. The center of the diagram explains the novel
approach of using the deep regression network (SBreathNet)
to extract breathing patterns from the speech signal. The
auto-encoder architecture provides the representation for
performance comparison. With the three approaches, con-
fident and non-confident classifications are achieved using
respective RandomForest (RF) classifiers.

frames – are used in three different approaches for the
classification of confident and non-confident responses.

For every 20 miliseconds (ms) of speech frame, an MFCC
feature vector of length 13 is calculated. Each 1X13 MFCC
feature vector is treated as a sample while feeding the
RandomForest classifier. The ground truth for every speech
response of around 3−4 minutes is extended to each speech
frame for the classification purpose.

For the extraction of breathing patterns from speech,
the significance of the low-level time-domain features is
discussed in [18]. Using these features, a Pearson correlation
coefficient of 0.57 is achieved between the speech and the
predicted breathing patterns of the ComParE dataset [10].
Among other speech parameters used for understanding
the respiratory problems such as COVID-19 from human
voice, MFCCs and the phase-domain decomposed filter
components (PDDFC) of the speech signal are discussed
for the classification of COVID-19 subjects from healthy
subjects in [19]. We explored the time-domain features,
MFCCs, and PDDFC for training SBreathNet. It is observed
that the combination of time-domain features with PDDFC
performs the best. Both features are calculated for every
speech frame of 20ms. Time domain features form a feature
vector of length 16 comprising of: ZCR, kurtosis, RMS,
auto-correlation, and 10 time domain difference features and
PDDFC forms the feature vector of length 160.

To obtain an auto-encoder representation, raw speech
frames of 40ms duration are fed to the auto-encoder.

IV-B. Model Architectures

The centre of Figure 2 shows the SBreathNet architecture
for the extraction of breathing patterns from speech signals.
This network is trained using time domain features and
PDDFC as input with a batch length of 250 corresponding
to a duration of 5 seconds (a sample for every 20ms is
calculated; hence, 250 samples = 250X20ms = 5000ms).
Both inputs are passed separately to corresponding LSTM
blocks consisting of two LSTMs and a dense layer. The
output of these two LSTM blocks are concatenated and fed to
two consecutive dense layers. This forms the output of the
SBreathNet. The loss function calculates the concordance
correlation coefficient (CCC) loss between the true and
predicted values. The network learns with a learning rate of
0.001 and with an Adam optimizer. The activation function
of the last dense layer is a hyperbolic tangent (tanh) function.
This causes the prediction values to range between −1and1.

The bottom part of Figure 2 shows the auto-encoder
network architecture. The raw frames of duration 40ms are
normalised and are passed as an input to the auto-encoder
network. With multiple configuration trials, we utilize four
LSTM layers to capture the time-series nature of speech,
followed by a final dense layer. Figure 2 illustrates the
architecture. The input data has a dimension of mx320,
where m denotes the number of 40 ms speech frames present
in each response. After experimenting with several node
sizes in the bottleneck layer, 25 nodes are found to perform
the best in regenerating the input by the auto-encoder. The
LSTM layers in the auto-encoder are fine-tuned to have a
learning rate of 0.001 with an Adam optimizer. The loss
function used calculates the Pearson’s correlation coefficient
(r) between the input and the re-generated output of the auto-
encoder and returns ’1-r’ as the loss value. A batch size of
one is used with a batch length of 25 to encode the speech
of one second (25X40ms) in one batch.

IV-C. Confidence Classification using a RandomForest
classifier

All three feature sets – MFCCs, SDBPs, and auto-encoder
representations – are fed to the RandomForest Classifier
as shown in Figure 2. In the first approach, an MFCC
vector represents a 20ms speech frame, which is then fed
to the RandomForest classifier. In the second approach, we
get a breathing pattern of 5 seconds predicted for every 5
seconds of speech. These 5 seconds SDBPs are then fed to a
RandomForest classifier as feature sets. The third approach
presents an auto-encoder representation for every 1 second
of speech frame. A batch size of one is used with a batch
length of 25 to encode the speech of one second (25X40ms)
in one batch. These 1 second representations are then fed to
the RandomForest classifier. The Random Forest algorithm
is built with 100 trees and a maximum depth of 7.
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Table I. Fold-wise performance of MFCCs, auto-encoder, and SDBPs using a RandomForest classifier.
SDBPs Auto-Encoder Representation MFCC features

# AUC Accuracy Precision AUC Accuracy Precision AUC Accuracy Precision
1 57.8 67.2 55.2 53.3 68.1 55.5 48.9 61.8 48.7
2 95.2 95.0 94.8 95.2 95.3 95.3 93.4 93.2 93.0
3 93.4 93.8 93.6 93.6 94.4 94.7 91.0 91.6 91.3
4 63.0 65.7 63.6 56.7 63.3 60.2 53.1 59.1 54.4
5 68.4 70.4 77.5 53.9 57.4 61.6 51.7 55.3 55.2
Average 75.6 78.4 76.9 70.5 75.7 73.5 67.6 72.2 68.5

V. RESULTS

This section presents the results of the SBreathNet regres-
sion model. Further, we explain the confidence classification
performance of the RandomForest classifier using SDBPs as
the feature set and compare it with that of the MFCCs and
auto-encoder representations.

V-A. Regression

The performance of the regression model, SBreathNet, is
calculated using Pearson’s correlation coefficient (r-value)
as metric and three different loss functions: CCC, Huber
loss, and MSE. An average r-value of 0.61, 0.55, and
0.55 is achieved across the 100 speakers with the loss
functions CCC, Huber, and MSE respectively. The breaths-
per-minute (BPM) count for every speaker is calculated on
the predictions obtained with the three loss functions and
compared with that of the true breathing pattern. A peak
detection algorithm from scipy [20] is used for detection of
peaks keeping a distance as 100 points and the height as
0.2. Using the peak count, further the BPM is calculated for
each speaker. An average BPM error obtained is 2.50, 2.95,
and 2.65 for the CCC, Huber, and MSE loss functions.

V-B. Classification

We use speaker independent training and validation par-
titions to improve the generalising capability of the Ran-
domForest model. Speaker-independent analysis indicates
that the speakers in the training and validation partitions
are different and unseen. The results for all the models are
calculated over five folds. The distribution of the data across
these five folds is as shown in Table II; each fold is balanced
for only training partition by performing augmentation by
repetition.

Table II. Duration (in minutes) of confident and non-
confident responses in the train and validation partitions in
each fold of the 5-fold cross-validation.

Train Validation
# Confident Non-confident Confident Non-confident
1 29 19 11 4
2 38 23 10 7
3 35 23 12 7
4 32 18 8 5
5 33 18 7 6

As seen in Table I, the SDBPs exhibit a highest AUC
of 75.6% averaged across five folds of the data. When
compared with MFCCs and the auto-encoder representation
based classification, SDBPs outperform in all other metrics
as well. Specifically, SDBPs exhibit an AUC that is higher
than that of MFCCs and the auto-encoder representation
by an absolute value of around 8% and 5% respectively.
The SDBPs when fused with the auto-encoder representa-
tion gives 71.7% AUC across the five folds, which is an
average of the performance exhibited by the two feature sets
individually. This strengthens the contribution of SDBPs as
the feature set for confidence level classification.

VI. DISCUSSION
To further understand the classification performance of the

SDBPs, we have calculated the average representation for
confident and non-confident classes. As seen in Figure 3,
the depth of the breathing pattern is found to differ between
the confident and non-confident speakers. Non-confident
speakers exhibit deep breaths as they also take longer pauses
while speaking. However, the confident speakers are found
to have shallow breaths. From the average breaths per minute
calculated for both the classes the confident class is found
to have an absolute increment of 2 breaths per minute on an
average when compared with the non-confident class.
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Fig. 3. The average breathing patterns for the confident and
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VII. CONCLUSION AND FUTURE WORK
We conclude that speech-derived breathing patterns not

only perform better in automatically classifying confident
and non-confident speech responses, but also help in under-
standing the rationale. We presented an empirical evidence of
enhancement in performance by using the proposed feature
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set over MFCCs and auto-encoder representations. In future
work, we intend to extend this analysis to other behavioural
parameters such as emotions, stress, and anxiety.
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