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Abstract—Neural attention mechanisms have gained signifi-
cant popularity and widespread adoption in various applica-
tions. These attention mechanisms can be applied to different
models, including sequential and spatial models. Recently, the
Transformer model, based on multi-head self-attention, and the
ResNeSt model, utilizing split-attention, have been developed
for sequential and spatial tasks, respectively. However, many
attempts to leverage state-of-the-art attention methodologies for
speech-related classification problems have been made without
thorough analysis. In this paper, we conduct an extensive analysis
of various attention-based methods by performing experiments
on infant cry classification and speech emotion recognition tasks.
Additionally, we evaluate the proposed models on different
durations of audio clips from the Baby Chillanto and CREMA-
D databases. Our results demonstrate that the Transformer
(encoder-only) model significantly outperforms ResNeSt. How-
ever, for longer audio clips, ResNeSt exhibits greater robustness
compared to the Transformer. Furthermore, both Transformer
and ResNeSt surpass the previous state-of-the-art in infant cry
classification, achieving recall improvements of 10.9% and 4.3%,
respectively.

Index Terms—Attentions, Transformer, ResNeSt, Infant Cry
Classification, Emotion Recognition.

I. INTRODUCTION

Recent advancements in deep learning have led to the
proposal of various architectures for different domains, in-
cluding speech technology. These applications encompass a
wide range of areas, such as Speech Enhancement [1]–[5],
Voice Conversion [6]–[8], and Dysarthria speech severity clas-
sification [9], [10]. Convolutional Neural Networks (CNNs)
and Long-Short Term Memory (LSTM) brought many ad-
vancements in spatial and sequential problems, respectively.
However, these models often suffer from limitations and are
highly reliant on the available training data, leading to a lack
of robustness. To address these limitations and enhance the
efficiency and robustness of various tasks in image, text, and
speech domains, neural attention mechanisms were introduced
[11]–[14]. Attention mechanisms enable models to focus on
crucial parts of the input, improving their overall performance.
Different types of attention mechanisms have been proposed,
including content-based (e.g., cosine), additive, location-based,
general, dot-product, and scaled dot-product. Attention can
also be categorized into self-attentions, global (soft) attentions,
and local (hard) attentions [15]–[20].

One groundbreaking model that has recently emerged for
pre-training language models is the Transformer [19]. The
Transformer leverages multi-head self-attention to process
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various parts of the input simultaneously. For example, Dong
et al. [21] proposed the Speech-Transformer for speech recog-
nition, and Tarantino et al. [22] utilized Transformer-based
models for speech emotion classification. In addition to se-
quential models, attention mechanisms have also been applied
to CNNs to extract key features from input data. In particular,
Zhang et al. [23] introduced attention mechanisms on top of
CNN for speech emotion classification. However, CNN-based
attention approaches have limitations regarding the number of
times attention can be applied. To address this, we rely on
a more reliable and sophisticated architecture called ResNeSt
[24], which utilizes split-attentions at each residual block to
enhance the efficiency of computer vision tasks. Furthermore,
our analysis reveals that attention-based models outperform
regular models.

In this paper, we investigate two major attention-based
architectures, namely, the encoder-style Transformer [19] and
ResNeSt [24], for short-duration speech classification tasks.
We conduct a comprehensive analysis and comparison of their
robustness by considering two well-known problems: infant
cry classification and speech emotion recognition. We note that
the state-of-the-art method for infant cry classification, namely
speech commands transfer (sc-transfer) [25], does not leverage
attention mechanisms and thus exhibits limited performance.
Moreover, the literature on emotion recognition lacks detailed
experiments on attention mechanisms [21], [22]. Our findings
indicate that the Transformer model outperforms ResNeSt for
short-duration audio clips in terms of overall performance.
However, for longer audio clips, ResNeSt demonstrates greater
robustness and generalizability compared to the Transformer.
The main contributions of this work can be summarized as
follows:

• We provide the first analysis of the effectiveness and
robustness of various attention-based models for short-
duration speech classification.

• Our proposed attention-based methods achieve state-of-
the-art results for infant cry classification.

The remainder of the paper is organized as follows: Both
methodologies are explained in Section 2. Section 3 contains
the experimental setup to make the results reproducible. While
Section 4 presents all the experiments and results of this study
followed by summary and conclusions in Section 5.

II. APPROACH

In this Section, we explain both the attention-based models,
i.e., Transformer and ResNeSt. Furthermore, we explain the
details of different attention mechanisms used in both method-
ologies.
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Fig. 1. Architecture design of encoder-only Transformer model. After [19].

A. Encoder-only Transformer

Transformer was proposed by Vaswani et. al. [19] for
various natural language processing (NLP) tasks. There are
two main structures in the Transformer architecture, namely,
an encoder and a decoder. Within these structures, there are
various layers through which the input passes, such as Multi-
Head Attention, Normalization, and a Feedforward neural net-
work. Furthermore, Devlin et al. [26] introduced Bidirectional
Encoder Representations from Transformer (BERT), which
has an architecture that uses only the encoder structure of
the Transformer to achieve state-of-the-art results on various
NLP tasks. This shows that encoders are sufficient to learn the
representations and interactions between various input compo-
nents of the sequential data. Therefore, inspired by BERT, we
apply a similar architecture for speech data classification. Fig.
1 shows the architecture used in our study. Before inserting the
input into the encoder, a positional encoding is added to the
input since the Transformer does not contain any recurrence
or convolution and cannot determine the order of the input
sequence. We have also inserted a linear layer before passing
the input to the encoder, as suggested in Pham et al. [27],
and our experiments demonstrate that incorporating a linear
layer yields superior performance compared to omitting it.
From Fig. 1, we can observe that the model is composed of
N number of stacked layers.

1) Multi-Head Attention (Self-Attention): The encoder’s
multi-head attention-based sub-layers perform the scaled dot-
product attention operation in parallel a fixed number of times,
governed by a hyperparameter. Suppose each sub-layer applies
m distinct self-attentions, the model will then have a total of
N ×m attentions.

Scaled dot-product attention takes query (q), key (k), and
value (v) as inputs. Here, q, k, and v are extracted from the
output of previous layer using neural networks. When scaling
is applied across all the feature vectors of the given inputs,
each attention’s result can be represented as follows [19]:

Attention(Q,K, V ) = softmax
(QKT

√
dk

)
V, (1)

where Q,K, and V are the matrix of queries, keys, and
values extracted from the entire input speech signal. Further-

Fig. 2. ResNeSt block and split-attention. After [24].

more, for m number of heads of a single layer, Multi-Head
attention can be represented as [19]:

MultiHead(Q,K, V ) = Concate(head1, ..., headm)W 0,
(2)

where headi = Attention(QWQ
i ,KK

i , V V
i ).

B. ResNeSt
ResNeSt, proposed by Zhang et al. [24] for various com-

puter vision tasks, introduces a modification to the ResNet
architecture by incorporating feature map split attention within
individual network blocks. In each block, the feature map is di-
vided into groups along the channel dimension, creating finer-
grained sub-groups. This unit is referred to as a split-attention
block, and ResNeSt consists of multiple such blocks. Fig. 2
provides an illustration of a ResNeSt block in the cardinality-
major view, showcasing the split-attention mechanism.

1) Split-attention Block: The split-attention block consists
of two operations:

Feature map Group - The features are divided into multiple
groups, where the number of groups, denoted as cardinal
groups, is determined by a hyperparameter K. Within each
cardinal group, the feature map is further split into sub-groups,
with the number of splits given by another hyperparameter R.
Consequently, the total number of feature groups is G = KR.

Split attention in Cardinal Groups - Fig. 2 shows split-
attention within a cardinal group, where c = C/K. Fusing via
elementwise summation across splits is used to obtain a com-
bined representation for each cardinal group. The kth cardinal
group’s representation is given by Ûk =

∑Rk
j=R(k−1)+1 Uj ,

where Ûk ∈ RH×W×C/K for k ∈ 1, 2, ...,K.
H , W , and C are block output feature map sizes. To

capture global contextual information, global average pooling
is applied across the spatial dimensions, which is given by
sk ∈ RC/K . The cth component is calculated as [24]:

skc =
1

H ×W

H∑
i=1

W∑
j=1

Ûk
c (i, j). (3)

Channelwise soft attention is used for aggregating weighted fu-
sion of the cardinal group representation, V k ∈ RH×W×C/K .
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The feature map channels are produced using a weighted
combination over splits. The cth channel being calculated as
[24]:

V k
c =

R∑
i=1

aki (c)UR(k−1)+i, (4)

where aki (c) denotes a (soft) assignment weight given by [24]:

aki (c) =


exp(Gc

i (s
k))∑R

j=0 exp(Gc
j (s

k))
if R > 1,

1

1+exp(−Gc
i (s

k))
if R = 1.

(5)

The mapping Gc
i determines the weight of each split for the

cth channel based on sk (the global context representation).
Finally, the cardinal group representations are concatenated
along the channel dimension. The final output Y of the split-
attention block is produced using a shortcut connection similar
to the one used in the standard residual blocks. There are two
cases to be considered when producing the final output, the
first being when the input and output feature maps have the
same shape, in such a case, the output is Y = V + X . In
the second case, if the blocks have a stride, the appropriate
transformation T is applied to align the output shapes; in such
a case, the output is Y = V + T (X).

III. EXPERIMENTAL SETUP

A. Database and Feature Extraction

We selected two diverse datasets to evaluate the perfor-
mance of the Transformer and ResNeSt models across differ-
ent tasks. Firstly, we used the most commonly referred Baby
Chillanto database for infant cry classification [28]. Secondly,
CREMA-D [29] is used for evaluating both the attention-
based models on speech emotion recognition for various
duration of audio clips. Baby Chillanto database contains
overall 5 different classes of infant cries (i.e., asphyxia, deaf,
hunger, normal, and pain). Here, we perform asphyxia vs.
non-asphyxia classification to investigate the performance of
these architectures for binary classification on speech data.
We have a total of 340 and 1049 audio samples for each
class, respectively. Here, we have only about 23 minutes of
data. Furthermore, we choose the CREMA-D dataset, an open-
source dataset containing audio samples from 91 different
actors (48 males and 43 females). This dataset contains 6
different emotions, namely, anger, disgust, fear, happy, neutral,
and sad. Out of these, we use all the classes except neutral
for the high-intensity level of emotion. Overall, we have taken
about 14.5 minutes of data.

For feature extraction, we computed the 36-dimensional
Mel Frequency Cepstral Coefficients (MFCCs) from the audio
clips, including the 0th cepstral coefficient. A window size of
128 ms and a frame shift of 32 ms were used for extracting
MFCCs. All audio clips were sampled at a rate of 16 kHz.
For the Baby Chillanto database, we used the entire duration
of the audio clips, i.e., 1 second. For the CREMA-D database,
we considered three different durations: 1, 3, and 5 seconds,
corresponding to 32, 94, and 157 feature frames, respectively.

B. Architectural Details

In this subsection, we provide detailed descriptions of the
Transformer and ResNeSt architectures used in our experi-
ments, along with the training procedure. Moreover, we have
made the codebase publicly available on GitHub

∗
to ensure

the reproducibility of our experiments.
1) Transformers: Through empirical experiments, we deter-

mined that an architecture comprising 6 layers, with 6 attention
heads in each sub-layer of the encoder, achieved optimal
performance for infant cry classification. Therefore, our archi-
tecture consists of a total of 36 (6x6) attentions. Each fully-
connected layer contains 1023 neurons with Rectified Linear
Unit (ReLU) activation [30]. For the CREMA-D database,
when using 1-second audio clips, the best performance was
achieved with 6 layers and 6 attention heads in each sub-
layer of the encoder. Each fully-connected layer contains 66
neurons. For 3-second audio clips, the optimal configuration
included 2 layers with 3 attention heads in each sub-layer,
with each fully-connected layer containing 258 neurons and
ReLU activation. Similarly, for 5-second audio clips, the best
performance was achieved with 2 layers and 12 attention
heads in each sub-layer of the encoder, with each fully-
connected layer containing 258 neurons and ReLU activation.
A single output layer was employed to generate predictions for
each input, depending on the specific task. We utilized early
stopping criteria with a patience of 5 epochs and a maximum
of 500 epochs. The Adam optimizer [31] was used with a
learning rate of 0.00005 for both databases.

2) ResNeSt: For our ResNeSt experiments, we employed
the ResNeSt-50 model as proposed in the original paper.
We used the radix-major implementation, which leverages
standard CNN operators and group convolution, resulting in
faster computation compared to the cardinality-major imple-
mentation. In our experiments, we set the radix value to 2. For
both the Baby Chillanto and CREMA-D datasets, we found
that a learning rate of 0.001 and a dropout rate of 0.2 yielded
the best results across all durations of audio clips. We utilized
the Adam optimizer to optimize the model parameters. Early
stopping criteria with a patience of 5 epochs and a maximum
of 500 epochs were applied. In the case of infant cry classi-
fication, the fully-connected layer at the end of the ResNeSt
model employed the sigmoid activation function, suitable for
the binary classification task. On the other hand, for the multi-
class classification task in the CREMA-D database, we utilized
the softmax activation function.

IV. EXPERIMENTAL RESULTS

To evaluate the performance and effectiveness of both
models, we employed standard performance metrics such as
Area Under Curve (AUC), F1 score, Recall, and Accuracy
[25]. Additionally, we conducted experiments using various
durations of audio clips to understand the models’ behavior
under different conditions. In order to simulate real-life sce-
narios and assess the impact of different attention mechanisms,

∗
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TABLE I
PERFORMANCE (MEAN AND STANDARD DEVIATION) OF DIFFERENT

MODELS ON INFANT CRY CLASSIFICATION TASK AFTER REMOVING INPUT
FRAMES ON TEST SET

Method % Frames Removed AUC Recall F1 Accuracy
ResNet - without attention 0% 0.9765 0.8676 0.8676 93.5%

Transformer
0% 0.9918 0.9706 0.9296 96.4%

15% 0.9896
(+/- 0.001)

0.9294
(+/- 0.012)

0.9041
(+/- 0.0084)

95.2%
(+/- 0.4%)

20% 0.9892
(+/- 0.001)

0.9882
(+/- 0.007)

0.9143
(+/- 0.0075)

95.4%
(+/- 0.4%)

ResNeSt
0% 0.9821 0.8971 0.9037 95.32%

15% 0.981
(+/- 0.002)

0.8676
(+/- 0.01)

0.8846
(+/- 0.012)

94.5%
(+/- 0.65%)

20% 0.987
(+/- 0.001)

0.8736
(+/- 0.04)

0.885
(+/- 0.027)

94.5%
(+/- 1.2%)

Method Length of Audio AUC Recall F1 Accuracy

Transformer

0.5 sec 0.9847 0.9559 0.8966 94.6%
0.6 sec 0.0597 0.7647 0.3161 19.0%
0.7 sec 0.9905 0.9853 0.9116 95.3%
0.8 sec 0.8164 1 0.4172 31.7%
0.9 sec 0.9914 0.9706 0.9231 96.0%

ResNeSt

0.5 sec 0.9919 0.8971 0.9037 95.3%
0.6 sec 0.9920 0.8971 0.8971 95.0%
0.7 sec 0.9929 0.8824 0.9023 95.3%
0.8 sec 0.9909 0.8971 0.8971 95.0%
0.9 sec 0.9907 0.9265 0.9131 95.7%

we randomly removed 15-20% of frames during the test phase.
For infant cry classification, we also examined audio clips
ranging from 0.5 to 0.9 seconds in length. In this Section, we
first analyze both approaches for infant cry classification, and
later, we conduct evaluations on emotion recognition.

A. Infant Cry Classification

Table I presents the performance comparison of the two
attention-based methodologies. The results indicate that both
models perform similarly in terms of accuracy, AUC, and
F1 score when no frames are removed. However, when
considering recall, which is particularly crucial in healthcare
applications, the Transformer model exhibits superior perfor-
mance over ResNeSt. To evaluate the models’ robustness, we
conducted experiments by randomly removing 15% and 20%
of input frames, as well as decreasing the audio clip length,
while evaluating the pre-trained models. Each experiment
was repeated five times for more accurate measurements of
robustness. From the results in Table I, we observe that the
Transformer model displays greater robustness than ResNeSt
when frames are randomly removed. However, when decreas-
ing the audio length, ResNeSt appears to be more resilient than
the Transformer. Moreover, both the Transformer and ResNeSt
models outperform the baseline approach (sc-transfer) by
10.9% and 4.3%, respectively. Notably, when comparing the
attention-based models with the non-attention-based ResNet
model, we observe that the attention-based methods yield
superior performance.

B. Speech Emotion Recognition

We adopted a similar evaluation strategy to assess the
robustness of both architectures. Additionally, we conducted
training and evaluations on audio clips of different durations,
namely 1, 3, and 5 seconds. Similar to infant cry classifica-
tion, we randomly removed 15% and 20% of frames during
evaluation. The results presented in Table II and Table III
demonstrate that the Transformer model outperforms ResNeSt
when no feature frames are removed. However, when dealing
with longer audio clips, ResNeSt exhibits greater robustness

TABLE II
PERFORMANCE (MEAN AND STANDARD DEVIATION) OF TRANSFORMER

ON EMOTION RECOGNITION TASK AFTER REMOVING 0%, 15%, AND 20%
OF INPUT FRAMES ON THE TEST SET

Duration % Frames Removed AUC F1 Accuracy

1 second
0% 0.8247 0.4654 52.2%

15% 0.7982
(+/- 0.011)

0.4174
(+/- 0.008)

48.89%
(+/- 0.78%)

20% 0.7948
(+/- 0.012)

0.2319
(+/- 0.022)

38.45%
(+/- 1.7%)

3 seconds
0% 0.8444 0.5961 61%

15% 0.8195
(+/- 0.023)

0.4723
(+/- 0.022)

50.4%
(+/- 2.3%)

20% 0.7932
(+/- 0.025)

0.4146
(+/- 0.026)

46.9%
(+/- 2.6%)

5 seconds
0% 0.8569 0.5862 56.7%

15% 0.3458
(+/- 0.028)

0.039
(+/- 0.008)

6.2%
(+/- 1.3%)

20% 0.348
(+/- 0.022)

0.041
(+/- 0.017)

6.9%
(+/- 2.2%)

TABLE III
PERFORMANCE (MEAN AND STANDARD DEVIATION) OF RESNEST ON

EMOTION RECOGNITION TASK AFTER REMOVING 0%, 15%, AND 20% OF
INPUT FRAMES ON TEST SET

Duration % Frames Removed AUC F1 Accuracy

1 second
0% 0.7346 0.4217 43.3%

15% 0.734
(+/- 0.014)

0.4133
(+/- 0.016)

43.11%
(+/- 1.45%)

20% 0.7524
(+/- 0.020)

0.4348
(+/- 0.018)

45.11%
(+/- 2.4%)

3 seconds
0% 0.8301 0.4622 50%

15% 0.7971
(+/- 0.016)

0.4358
(+/- 0.039)

47.22%
(+/- 3.2%)

20% 0.7741
(+/- 0.016)

0.4008
(+/- 0.033)

44.2%
(+/- 2.4%)

5 seconds
0% 0.8443 0.4739 51.1%

15% 0.8115
(+/- 0.009)

0.4471
(+/- 0.031)

49.78%
(+/- 2.9%)

20% 0.7596
(+/- 0.011)

0.4323
(+/- 0.049)

47.78%
(+/- 4.1%)

compared to the Transformer. Interestingly, when evaluating
both approaches on the full duration of audio clips (i.e., 5
seconds), we observe that the Transformer performs poorly
when feature frames are randomly removed.

V. SUMMARY AND CONCLUSIONS

This paper introduced two state-of-the-art attention-based
methodologies, namely Transformer and ResNeSt, which ad-
dress classification problems from the perspectives of se-
quential and spatial processing, respectively. Specifically, we
conducted experiments on infant cry and speech emotion
classification tasks to evaluate the effectiveness and robustness
of both architectures. Moreover, we examined the performance
of these models across different audio durations. Through a
series of comprehensive experiments, including the evaluation
of robustness by randomly removing frames, we made several
key observations.

Overall, the results demonstrate that the Transformer model
outperforms ResNeSt in terms of all performance metrics
considered. Particularly, the Transformer exhibits superior
performance in accuracy, AUC, F1 score, and recall, making
it a compelling choice for both infant cry and speech emotion
classification tasks. However, when examining robustness,
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ResNeSt emerges as the more resilient model, especially for
longer-duration audio clips. This finding highlights the impor-
tance of considering both performance and robustness aspects
when selecting an appropriate model for specific applications.

As we look ahead, our future work will focus on further
enhancing the performance of these models. This may in-
volve exploring novel architectural modifications, leveraging
additional contextual information, or incorporating domain-
specific knowledge. By continually refining and advancing
these attention-based methodologies, we aim to improve their
applicability and impact in various real-world scenarios.
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