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Abstract—In autonomous driving, the knowledge of scene
depth is essential for the control of car navigation. The depth
can be measured by dedicated sensors like sonar, radar, LiDAR,
ToF camera or obtained by computation from videos collected
by an RGB camera. In this paper, we propose a novel solution
for estimating depth maps from videos by using a neural
network with self-supervised learning. The novelty consists in
using ground truth position measured by IMU sensors on-board
instead of motion estimated pose. The fusion of data from IMU
sensors and RGB camera results in a lighter network and shorter
training times. Results on depth accuracy and odometry are given
after tests on KITTI dataset.

Index Terms—Depth map, self-supervised learning, neural
networks, structure-from-motion, automotive.

I. INTRODUCTION

At autonomous cars, the typical architecture of the automa-
tion system has two distinct parts: the Perception system,
which estimates the car position, and the Decision Making
system that controls the navigation. Depending on the level
of autonomy, the tasks of the automation system can go from
simple warnings (level 0), to the partial or complete control
of the car (levels 3 to 5). The intermediate levels 1 and 2 are
reserved to driver assistance in traffic and can include cruise
control, lane positioning, highway assistance etc. [1].

The automation system operates with data collected by
various in-car sensors e.g., 2D and 3D cameras, radar, GPS,
LiDAR, Inertial Measurement Unit (IMU) etc. The Perception
system processes all these data to calculate static maps of the
environment, estimates the car position in relation to these
maps, tracks the surrounding moving objects, or detects and
recognizes the traffic signalization.

Among in-car sensors, the depth sensors constitutes a dis-
tinct category. By using various physical principles, they are
able measure the distance to the objects or persons surrounding
the car [2]. Sonar (SOund Navigation And Ranging), in its
active version, emits sound pulses and read echoes returned
from physical surfaces. Mounted on cars, it can detect objects
up to 5.5 m. It works on bad weather, fog or by night, newer
versions have resolution compared to that of LiDAR and is
relatively cheap. Radar (RAdio Detection And Ranging) is
the most common depth sensor used on cars. It is likewise
the sonar, an active sensor but uses pulses of radio waves
instead of sounds. The radar sensors are mounted all around
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the car in such a way to detect objects at any angle. They are
used for automatic distance control and brake assistance. The
LiDAR (Light Detection And Ranging) sensors work similarly
to radar, the main difference being the use of lasers instead
of radio waves. Unlike radars, the LiDAR creates a full 360-
degree map around the vehicle rather than relying on a narrow
field of view. This advantage makes from the LiDAR the
option preferred by autonomous vehicle manufacturers despite
the significantly higher cost. Time-of-Flight (ToF) camera
is a 3D camera that collects depth maps by measuring the
round trip travel time of infrared light from the camera to the
object. The depth range is up to 40 m and the accuracy is
several millimeters. Nowadays, ToF cameras come to use in
driver assistance technologies, emergency brake systems and
pedestrian protection.

Sonar, radar, LiDAR or ToF camera are sensors that directly
measure the depth of scenes. A further alternative is to obtain
the depth by computation, from the side effects of other
sensors like motion in videos or defocus blur in images taken
with a 2D camera. There is a plethora of methods for inferring
depth from videos, all under the generic name of Structure-
from-Motion (SfM). These methods inherit the limitations of
cameras i.e., they do not work well in low visibility conditions,
like fog, rain or nighttime but they come with the advantage
of providing dense depth maps instead of more or less sparse
point clouds. Moreover, they use a RGB camera, a sensor
already existing on cars and working for other tasks too.

As in many other areas, Deep Learning has brought a
lot of progress in SfM due to the ability of learning data-
driven models that outperform in terms of fidelity the classical
ones. A particular interest has been in self-supervised learning
methods that do not require ground truth (GT) depth for the
training of the neural network (NN).

One of the earliest solutions was proposed by Zhou et al.
in [3]. Inspired by prior works on view synthesis, the authors
have proposed an end-to-end solution for learning dense depth
maps from videos. The current frame is estimated by warping
on a neighbouring frame and the loss function is build on the
difference between the original and the estimate. A secondary
network estimates in parallel, camera relative pose between the
two frames. Specific problems like frame untextured regions
that generate uncertainty, moving objects, which breaks the
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TABLE I
ACCURACY OF DEPTH ESTIMATED BY NN WITH SELF-SUPERVISED LEARNING.

Network Abs. Rel. | Sq. Rel. | RMSE | RMSE log. | § >0.25 [ § > 0.252 | § > 0.25°
Zhou, T.H. et al. [3] 0.159 1.347 5.789 0.234 0.796 0.933 0.973
Godard, C. et al. [4] 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Casser, V. et al. [5] 0.108 0.825 4.750 0.186 0.873 0.957 0.982
Klingner, M. et al. [6] 0.113 0.835 4.693 0.191 0.879 0.961 0.981
Zhou, J. et al. [7] 0.121 0.837 4.945 0.197 0.853 0.955 0.982
Johnston, A. et al. [8] 0.106 0.861 4.699 0.185 0.889 0.962 0.982
Li, Y. et al. [9] 0.098 0.810 4.672 0.177 0.890 0.964 0.983
Alleoti, F. et al. [10] 0.119 1.239 5.998 0.212 0.846 0.940 0.976
Wang, C. et al. [11] 0.159 1.347 5.789 0.234 0.796 0.933 0.973

working hypothesis of scene rigid motion, as well as artefacts
like texture-copy, depth drift, incomplete structures or edge
bleeding, have triggered numerous improvements.

Godard et al [4] used for their monodepth2 a simple auto-
masking method that filters out the pixels without apparent
motion or moving differently than the rest of the scene.
More recent works use segmentation maps to learn distinct
motion models for the moving objects in the scene [12], [5],
[6]. Further, the frame warping is done by combining these
models and the camera ego-motion. To improve the depth
accuracy and reduce texture-copy and depth drift artefacts,
some networks include self-attention modules that favor the
use of larger contexts in estimating the depth. [7], [8], [9].

At the level of network architecture, the dominant solution
is the U-Net with a pre-trained encoder and completed by
a pose estimation network [3]. Another alternative has been
GANs [10], [13], [14]. In [10] for instance, the generator
estimates the depth map of the current frame, an estimate of
this frame is built by warping using depth and is provided
to the discriminator that tries to take a decision about its
genuineness. The network is trained to provide better and
better estimates such to cheat the discriminator, while the
discriminator learns how to distinguish better between an
estimated and a genuine frame. Architectural innovations have
been done also for the U-Net based solution. In [7], the depth
network, which is a deep NN of low resolution, is doubled
by a high resolution shallow network, also of encoder-decoder
type. The two networks are coupled by a self-attention module.
The high resolution network is used to extract the fine-grained
details, which are combined with global features from the
low resolution network. The result is a high-resolution and
high-accuracy depth map. Neither the pose network of the
generic solution was speared of innovation. In [11], the authors
replace this network by a direct visual odometry module that
calculates the pose by using Lucas-Kanade algorithm. The list
of SfM methods based on NN with self-supervised learning is
long. Table I only summarizes the performances of the above
mentioned ones in order to give a flavor about the capability
of this approach. All the networks in the table were trained
on KITTT dataset.

In this paper we propose a solution that goes toward the sim-
plification of U-Net based architecture, without significantly
reducing the accuracy of depth maps. The idea is to drop the
pose network and instead, to use the position measured by

IMU, which is already installed on autonomous cars. We use
as baseline for our proof, the network in [4].

By tests on KITTI dataset, we show that using IMU data
instead of estimated pose, the network estimates better the
depth in long range, while at short range there is only a
negligible loss in accuracy. The ablation of pose network
impacts also on the training stage that demands less resources
in terms of dataset and running time. We also give results
about the odometry and show some differences between the
estimated and IMU measured car trajectory and orientation.

II. IMU AND CAMERA DATA FUSION FOR DEPTH MAP
ESTIMATION BY SFM

In U-Net based architectures, the backbone is a standard
fully convolutional encoder-decoder network called depth net-
work, that is fed in by a video sequence and for each frame,
outputs a depth map (Fig. 1). Only for training, a warping
block is plugged into the network with the task of projecting
the current frame I; onto a neighbouring frame /> and to
calculate an estimate I; of it. The projection consists in
recalculating each pixel position as follows [3]:

@, = K Tiso K7 Di(ay) o (1)

where x; is the pixel position in I; also called target, and
x, is the new position in the next frame I, called reference.
K is the camera intrinsic matrix, 717, .9 is the camera pose
transformation between I; and I and D; is the estimated
depth map of ;. In most cases, the results z, is not an
integer meaning that the projected pixel is landing between
the pixels of I. In order to get an estimate for its intensity,
I is resampled by bilinear interpolation.

The differences between the actual values I(x;) and the
estimated ones is the “engine” of the learning process. At the
level of loss function, it translates into the common solution
adopted in self-supervised learning [4]:

L= pLy, + AL, )

where L, is a photometric loss that combines L1 norm
and SSIM to compare I; with 1:\1 andALS is a smoothing
regularization based on the gradient of D;. It is to note that
no GT for depth is necessary to train the network.

Our contribution concerns the camera pose transformation
11,9 in eq. 1. This transformation has to be calculated with:
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Fig. 1. General scheme of I MU cam: the depth network generates the depth map of every frame; the warping block calculates an estimate T} of the current
frame (it is active only during the training); camera orientation and relative translation are provided by IMU processor directly to the warping block.

—1
Tl»—>2 = T2>—>u;orld Tl»—)world (3)

where T}, worid 1S the camera extrinsic matrix. The extrinsic
matrix describes the camera location in the 3D world and its
pointing direction. It takes the form of a rigid transformation
consisting in a rotation matrix R3x3, and a translation vector
T3x1:

R3x3

T5x1
T1im world = 4
— ld (01)(3 1 >4><4 ( )

The rotation matrix is calculated by using the camera attitude
angles «, 8 and ~, called roll, pitch and yaw or Euler an-
gles. The components of T34 are camera spatial coordinates
(¢, Ye, 2c) With respect to the navigation reference system. In
71,9, they become relative translations.

In [4], as in all other methods from the class of self-
supervised learning SfM, the camera attitude and translation
are estimated by a secondary NN, called pose network (Fig.
1). Likewise the warping block, this network is active only
during the training stage. In autonomous cars equipped with an
IMU, the angles and the relative translations already exist, they
are calculated by IMU internal processor based on the data
measured by gyroscopes, magnetometer and accelerometers.

In our approach, we eliminate the pose network that is
redundant with IMU and instead, we supply the warping block
with real data provided by IMU. By fusing data from multiple
sensors - camera and IMU sensors - the depth network, that
we shall call from now on IMUcam, becomes lighter, with
less parameters to be learned. Besides, the incorporation of
IMU data brings a supplement of ground truth in the network
training. The impact on depth model accuracy as well as a
comparison from the odometry point of view, are analysed in
the next section by doing experiments on KITTI dataset.

III. EXPERIMENTAL RESULTS

In this section, we train IMUcam and monodepth2 net-
works independently on KITTI dataset, then we analyse the
differences at the level of odometry and depth estimation.

We use for training the odometry dataset of KITTI [15],
containing 22 videos at 10 frames per second with a resolution
of 1392x512 px. For 11 of the 22 video sequences, there
are also GT position and orientation, measured by an OXTS
RT3003 combined GNSS and IMU module. We split the
dataset leaving 36671 frames for training, 4075 frames for
validation and 697 frames for odometry tests (sequences 10
and 11). The tests for depth accuracy are done on Eigen split.

The training was performed on a computer with a 48 cores,
2.10 GHz, Intel(R) Xeon(R) Gold 6252 CPU with 786 GB of
internal memory and Nvidia Quadro GV100 GPU with 5120
cores and 32 GB of GPU memory. We trained both networks
for 40 epochs with a batch size of 12. The training method
was ADAM with a learning rate of 10, decreased by 10
every 15 epochs.

Figure 2 depicts the estimated and GT trajectory and ori-
entation of the camera. The two trajectories do not overlap
because of a significant drift between the estimate and the
measurement. Noticeable errors also appear at the level of the
orientation, especially for roll and yaw angles. The Root Mean
Square Error (RMSE), calculated with a 5 samples sliding
window, is 0.016 m for the trajectory and 7.642°for Euler
angles (Euclidean norm of roll, pitch and yaw). Although high,
these errors have a low impact on warping since the network
is using only the relative pose of adjacent frames.

Table II shows the errors in depth estimation alongside the
training time for both monodepth2 and I MU cam. Common
metrics are used for depth accuracy: Absolute Relative Error
(Abs. rel.), RMSE, their squared and logarithmic counterparts
(Sq.rel. and RM SFElog), and the Thresholded Accuracy (),
i.e. the probablity that the relative error is lower than a given
threshold [16]. The last row shows the gain of IMUcam by
respect to monodepth2. Although negative, the differences are
small. This might be because the measurements themselves
have errors. For the training time, the gain is significant for
IMUcam: 29% at the same training set.

Some examples of depth maps and corresponding frames
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Fig. 2. Estimated (orange) and measured (blue) trajectories and Euler angles on sequence 10 from KITTI odometry dataset.

TABLE 11
ACCURACY AND TRAINING TIME OF MONODEPTH2 AND IMUCAM.
JMEANS LOWER IS BETTER, TMEANS HIGHER IS BETTER

Network

Abs.Rel. | [ Sq.Rel. | | RMSE | | RMSElog. | | § <0.257 | § <0.25%2 7 | 6§ < 0.25% 1 [ Training time
Monodepth2 0.104 0.471 2.778 0.166 0.895 0.969 0.987 19h03m48s
IMUcam 0.106 0.496 2.846 0.169 0.887 0.968 0.986 13h30m28s
Gain -0.002 -0.025 -0.068 -0.003 0.008 0.001 0.001 5h33m20s

Monodepth2

IMUcam

GT by LiDAR

Fig. 3. Examples of frames from KITTI dataset and corresponding depth maps estimated by monodepth2, IMU cam and measured by a LiDAR.
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Fig. 4.  Absolute relative error vs.

depth. IMUcam outperforms
monodepth2 at long range.

Fig. 5. Depth histogram in KITTI training set. The lower depths are better
represented.
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Fig. 7. Monodepth2 and IMUcam training time vs. dataset size.
IMUcam is trained faster than monodepth2.

are presented in Fig. 3. On the last column, the are GT
maps collected with a LiDAR. The black areas are invalid
measurements. The differences between the maps estimated
by monodepth2 and IMUcam are almost imperceptible.
However, the edges seem sharper in /MU cam maps.

Figure 4 depicts the error of the predictions as a function of
depth. Monodepth2 has an advantage between 10 and 40 m,
a range that is better represented in the dataset, as shown by
the histogram of depths in Fig. 5. Meanwhile, I M Ucam has
an advantage at higher depths. This suggests that ITMUcam
has a better capacity to generalize due to a lower complexity.
To confirm this hypothesis, we used progressively less data in
the training set and plotted the mean absolute relative error
as a function of dataset size (Fig. 6). The same effect is
present, I M Ucam outperforms monodepth2 for small sizes,
less than 10,000 samples. Figure 7 shows the training time
as a function of dataset size. The training time increases
almost proportionally with the dataset size. For I MU cam, it is
always significantly shorter due to network lower complexity.

IV. CONCLUSION

We proposed a NN based solution for depth estimation from
videos that uses data from the vehicle navigation system. It
is basically a self-supervised network with the pose network
ablated and warping block supplied with processed data from
IMU sensors. This brings an advantage in terms of network
complexity, which is significantly reduced. The immediate

benefits are a shorter training time, a possibly smaller training
set and a higher generalization capacity, all at the cost of a
slightly lower depth accuracy at short range. In the future, we
will explore the use of analytical visual odometry algorithms
for improving the accuracy above the one of the of model
using pose estimation.
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