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Abstract—Forest fires can have a devastating impact on the
environment and pose a threat to human health. Due to the rapid
rate at which they spread, early detection is critical to ensure
a quick firefighting response. Automatic fire detection systems,
based on machine learning, play a substantial role in this. Hence,
in this paper, we combine the most recent state-of-the-art image
classification models in order to produce a more robust and
generalizable detection system through stacked generalization.
In particular, we introduce a model stack composed of two
types of model architectures: Convolutional Neural Networks and
Vision Transformers. A meta-classifier, constituted by a small
neural network, then learns how to best combine the predictions
extracted by the models to identify smoke plumes. This approach
exploits the architectural diversity and heterogeneity of the model
stack to tackle the hardest-to-predict wildfire scenarios. Our
results show an average accuracy of 96.5% and an Area Under
the Precision-Recall Curve of 95.2%, which corresponds to an
improvement of 2.11% and 1.2%, respectively, in comparison to
the best-performing model from the stack.

Index Terms—Forest fire detection, Image classification,
Stacked generalization

I. INTRODUCTION

The detection of early forest fires has become an increas-
ingly relevant topic. Because of their fast spread rate, early
detection allows firefighting teams to respond more effectively
to potential fires, which can help minimize their damage.
In their early stages, forest fires are characterized by small
smoke plumes, easily confused with other occurrences, such
as low clouds, fog, chimney smoke, and even dust caused
by cars passing on nearby roads (see also Fig. 1). Hence,
the problem lies in creating a detection system capable of
accurately distinguishing real forest fires from any other kind
of occurrence with similar visual behavior.

Recently, the use of Unmanned Aerial Vehicles (UAVs)
and watch towers equipped with imaging sensors has become
increasingly popular. On the other hand, the advancement of
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Fig. 1. Example of images taken from cameras mounted in surveillance towers
with different types of occurrences hard to predict. 1: Image obstruction. 2:
Foggy sky. 3: Low clouds. 4: Chimney smoke.

deep learning-based image classification models such as Con-
volutional Neural Networks (CNNs) and Vision Transformers
(ViTs) has made it possible to perform deeper and richer
feature extraction that was previously much more limited [1]–
[3]. Despite their increased performance, deep learning-based
approaches still have difficulty detecting the hardest-to-predict
scenarios since images can come in a diverse combination of
weather and seasonal conditions. Smoke plumes consisting of
early wildfires are also highly irregular, as they can appear
in different sizes, shapes, textures, and intensities. Because
of these diverse and irregular conditions, the models must
be sufficiently robust to capture all types of fire signs, while
minimizing the occurrence of false positives.

Inspired by the great performance of deep ensemble models
in multiple areas such as speech, health care, and image
classification [4], this paper introduces a model ensemble
based on stacked generalization with the purpose of improving
the performance of single-model detection. Stacked general-
ization, also known as stacked ensemble learning, involves
training multiple base models on the same dataset and using

1370ISBN: 978-9-4645-9360-0 EUSIPCO 2023



their predictions as inputs to a meta-classifier, which learns
how to best combine those predictions and make a final
decision. The meta-classifier can either be a simple pooling
operation or a more complex neural network, as used in this
work.

The chosen base models are constituted by two types
of model architectures: CNN and ViT, more specifically,
an EfficientNetV2 [5], a Data-Efficient Image Transformer
(DeiT) [6], and a Swin Transformer [7]. The intuition behind
this choice of models is to leverage the strengths of both
architectures which have inherently different forms of learning
[8]. Hence, by combining these two architecture types, we
can potentially create a more robust model that can better
handle both local and global features regarding fire signs in
the images. This can be particularly helpful in detecting fire
signs given the diversity and irregularity of early wildfires.

II. RELATED WORK

A. Forest fire detection through deep learning

The problem of forest fire detection has been tackled by a
wide variety of approaches based on different detection sys-
tems namely, terrestrial, aerial, and satellite-based [9]. CNNs
are heavily used in the literature for both image classification
and object detection. Xu et al. [10] proposed a mix of both
through an ensemble learning method based on three learners
with the aim of capturing more diverse features. The learners
are made up of two object detectors: a YoloV5 and an
EfficientDet that work in tandem to detect smoke and fire-like
objects, and an EfficientNet that captures global information.

In [11] the authors propose a novel mosaic-based detection
strategy that helps models to focus on the regions containing
fire signs while taking to account the whole image. The authors
used an EfficientNet as the detection model achieving an Area
Under Receiver Operating Characteristic curve of 0.949 over
the test set.

One problem with typical detection models is that the small
size of smoke plumes associated with wildfires can make them
difficult to detect, particularly when downsizing the images
during training. This happens because these models receive
as input considerably small image resolutions to constraint
computational time. To tackle this, Perrolas et al. [12] propose
a method based on the quad-tree search algorithm which con-
sists of a recursive subdivision of space into four quadrants. In
the context of fire detection, such method aims at recursively
segmenting the images into smaller patches and individually
searching for fire events in each. This way, the model can
better focus on smaller regions of the image and capture
smaller signs of smoke.

Other approaches to the detection of forest fires include
the use of image segmentation models such as DeepLabV3+
and Fully Convolutional Networks (FCN) to detect segments
of fire signs [13], [14]. The use of object detectors is also
heavily seen especially with the use of the YOLO family of
models given their speed and performance [15].

TABLE I
MODEL STACK DESCRIPTION

Model stack Input resolution # Parameters Architecture

EfficientNetV2S 384x384 22M CNN

DeiT 224x224 86M ViT

Swin TransformerV2 224x224 87M ViT

B. Ensemble learning for image classification

Ensemble learning is a popular technique for improving the
performance of deep learning models. This approach has been
shown to be effective in reducing overfitting and improving
accuracy in a variety of image classification problems. Some
of the most popular ensemble learning methods in deep
learning are: Bagging, Boosting, and Stacking. Stacking is
generally preferred when the model stack is heterogeneous
while boosting and bagging are preferred for homogeneous
model stacks [4].

Several forms of combining predictions include majority
voting, weighted and unweighted mean, and logistic regres-
sion. All of these are well-studied and can produce different
results depending on the task. Müller et al. [16] conducted
a comprehensive study on the different ensemble methods by
comparing their performances in medical image classification.
The authors empirically demonstrated that stacking produced
the best results, showing a performance gain of up to 13% in
the F1-Score. Regarding the combination of the predictions,
the authors got the best results with the simplest pooling
functions, the top performing being mean and majority voting.
They did not, however, try a neural network approach.

Ensemble learning approaches have been widely used in
medical image classification because of their reliability and
boost in performance [4]. Hameed et al. [17] proposed using
a model ensemble for classifying carcinomas in breast cancer
histopathology images. The authors employed an ensemble
of fine-tuned VGG16 and VGG19 by averaging the extracted
decision of both models, increasing performance. Xue et al.
[18] propose a framework to classify cervical histopathological
images through transfer learning and a weighted voting-based
ensemble learning for combining the models’ predictions. The
authors show a substantial performance improvement of 2.5%
to 5.5% accuracy higher than the base models.

III. PROPOSED METHOD

Inspired by the success of ensemble learning models in sev-
eral fields of image classification, the main goal of this paper is
to assess the use of model stacking to improve wildfire smoke
plumes detection, by relying on a meta-classifier composed
of three state-of-the-art classification models. Fig. 2 shows an
overview of the proposed approach, as detailed in this section.

A. Model stack

The considered models to compose the proposed stacking
method are based on CNNs and ViTs, which have substantial
differences regarding their internal representation structure
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Fig. 2. Overview of the model stack and the architecture of the meta-learner.
The diagram depicts the number of input parameters (In) and output (Out)
for each fully connected layer.

[8]. ViTs, for instance, are capable of capturing more global
information early in the lower layers because of the use of
self-attention. They also have a strong ability to propagate
that information throughout the layers, capturing long-range
dependencies. CNNs on the other hand, focus more on local
information at the lower layers, which is vital in the learning
process [8], leading to measurably different features. These
structural differences between the networks make this a het-
erogeneous stack which is preferred when using the stacking
method.

The proposed stack comprises an EfficientNetV2, a DeiT,
and a Swin transformerV2, as presented in Table I. For the
EfficientNetV2, the small version (EfficientNetv2S) of the
architecture, containing around 22 million parameters, was
chosen to constrain inference time. It should be noticed that
the medium-sized version of this network (EfficientNetv2M)
would result in a doubling of the training and inference time
for the same computational resources. As for the DeiT and
the Swin Transformer V2, the base models contain around
86 million and 87 million parameters, respectively. The input
images are downscaled to different resolutions for the two
types of architectures. For the EfficientNetV2 model, the input
image is downscaled to 384x384, whilst the other two models
receive a 224x224 image.

B. Meta-classifier architecture

The key idea of stacking is to use the output of two or
more models as input to another model, a meta-learner, which
combines these intermediate predictions into a final predic-
tion. Common choices for the meta-learner include linear
regression, logistic regression, decision trees, random forests,
gradient-boosting machines, and neural networks. It can also
be a simple pooling function such as a mean or majority
voting. In the case of a neural network, the meta-learner trains
on the base model predictions and learns to weight them in the
most optimal way. In this paper, we propose a simple neural
network as our meta-learner, composed of two dense layers
with a ReLU activation function in the middle (see Fig. 2).
Compared to the traditional unweighted mean approach, the
neural network showed better performance given its ability to
learn more complex relations between the models’ predictions.

C. Training and evaluation approach

All the models were independently pre-trained using the
ImageNet dataset. Fine-tuning the models’ parameters was
attained using a small learning rate of 0.0001. Compared to
just training the classifier layer and freezing all the layers
below, fine-tuning the whole model produced around a 4 to
9% increase in accuracy. Overall, transfer learning was critical
for boosting the models’ performance.

Data augmentation techniques, such as RandAugment [19],
also provided a significant performance boost. In particular,
random horizontal flip, and color jitter were applied to re-
inforce the models’ generalization ability. In addition, we
normalized the images using the official mean and standard
deviation of the ImageNet dataset. This step was necessary
as we utilized pre-trained models that were trained on the
ImageNet using such a normalization step.

The meta-learner was trained on the predictions given by the
base models for every fold. Training on both subsets showed
the best results compared to training on just one.

IV. EXPERIMENTAL RESULTS

The experimental results were conducted in a Google Colab
environment with the NVIDIA T4 Tensor Core GPU with
15GB of memory. Regarding the models, we utilized the pre-
trained weights from the official PyTorch repository provided
by the TorchVision library.

A. Dataset

The images used in this work were gathered from cameras
mounted in nine surveillance towers installed at different
geographical locations in the region of Leiria, Portugal, and
located at distances from the sea between approximately 10
and 60 km. The cameras operate in the visible spectrum,
forming a large-area wildfire surveillance system (see also
Fig. 3). Given the characteristics of the surveillance system,
the actual fire is not often visible in images (unless, for
example, when it reaches high severity levels). Hence, for early
forest fire identification, the system needs to be able to detect
small smoke plumes and provide early alarms.
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Fig. 3. Example of images taken from cameras mounted in surveillance towers. On the left, the tower 9 at a 13º rotation and on the right the tower 4 at a
0º rotation.

On total, the currently used dataset contains 14135 images
with smoke plumes and 21205 without smoke plumes, which
results in a 40%-60% class imbalance. This data imbalance
is however more pronounced in particular towers, as observed
in Table II. In general, the number of images without smoke
plumes exceeds those with them, with the greatest difference
being observed in tower 1. Specifically, only 10% of the
images captured in tower 1 contain a smoke plume, while
a vast majority of 90% depict no fire activity.

TABLE II
NUMBER OF IMAGES IN BOTH CLASSES (FIRE AND NO FIRE) FOR EACH OF

THE 9 TOWERS (1,2,3,4,7,8,9,10,11)

# 1 2 3 4 7 8 9 10 11

Fire 206 2796 475 929 2070 3571 2351 1130 607

No fire 1944 2920 3315 2393 1304 2329 2409 2822 1769

B. Quantitative results

To train and effectively evaluate our ensemble model, we ap-
plied a leave-one-out technique for each tower for evaluation,
while training on the remaining. This guaranteed that model
testing was performed in a very different environment from the
one it was trained in since the towers are placed in distinct
geographical locations. Given the time and computational
restrictions for evaluation, only three folds (or towers) will
be evaluated, corresponding to towers 4, 8, and 10, making it
a 3-fold cross-validation.

To assess the individual models’ performance and compare
them against the stacking approach, several metrics were
used, namely Accuracy (class-weighted, to account for class
imbalance), Precision, Recall, F1-Score and Area Under the
Precision-Recall Curve (AUPRC).

Table III shows the results of each base model and the
ensemble method for 3 sample folds corresponding to the
leave-one-out of towers 4, 8, and 10. The proposed neural
network meta-classifier presents the overall best results in
every fold compared to all of the base models in the stack.
Noticeably, when comparing with the best base model, there is
a substantial increase in the AUPRC score by a mean of 1.20%,
and in the accuracy by a mean of 2.11% (representing a ≈37%
average reduction of miss-classified images). Table IV shows
the average and standard deviation values for each metric.

Overall, the proposed stacking approach has higher values in
all the performance metrics, except for the precision which has
a similar average performance as the EfficientNetV2. Also, the
standard deviation is smaller for the model stack, illustrating
the robustness of the model compared to a single model.

Fig. 4 shows some examples of true positives and false
negatives predicted by the proposed stacking approach. It is
particularly interesting to observe that in the top right image,
the model struggles with the haze, not capturing the small
smoke plume in the distance.

It is also interesting to compare the proposed approach with
the work of Fernandes et al [11], which used the same dataset.
In their work, the authors attained the best results using an
EfficientNet (v1) model. Here, we propose a model stacking
approach which shows to provide better results than a single
updated EfficientNet (v2).

While model stacking seems to provide improved results
over the base model, it is also important to analyze the execu-
tion time, particularly to validate whether such a system can
be used in real-time. The proposed model stacking approach
takes a mean of 58ms to provide the results over a batch
of 16 images (which compares with an average of 17ms for
the base models). This provides the ability to classify up to
275 towers, considering an average frame rate of 1 image per
second (which is a practical value given the natural speed and
spread of forest fires) - currently, the image capture frame
rate is below 1 image per minute. This validates the use of
the proposed model stacking approach in real-time scenarios.

V. CONCLUSION

In this paper, we explored the potential of ensemble methods
for the task of early forest fire detection. We introduced
an ensemble stacking model that effectively improves the
performance of the base models by 1.3% to 2.2% in accuracy.
Our ensemble contains a meta-classifier composed of a small
neural network that learns how to best combine the predictions
from the model stack. The stack is composed of state-of-the-art
image classification architectures which given their different
forms of interpreting visual information, together cooperate
for enhanced accuracy and robustness in recognizing fire
signs. For evaluating our approach, we used a leave-one-tower-
out cross-validation method, reaching an average accuracy of
96.46% and Area Under the Precision-Recall Curve of 95.2%.
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TABLE III
PERFORMANCE EVALUATION OF THE BASE MODELS AND THE PROPOSED ENSEMBLE STACK WITH A META-CLASSIFIER.
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EfficientNetV2 95.33 95.18 96.19 94.73 93.84 91.78 89.87 98.53 83.69 90.19 95.93 97.04 99.07 95.36 97.84

DeiT 88.77 89.18 95.52 84.65 89.85 91.02 88.30 94.10 84.62 86.50 93.72 95.50 97.33 94.13 95.92

Swin TransformerV2 95.15 94.25 93.95 96.42 93.93 93.15 90.75 94.60 88.43 89.08 94.63 96.16 99.24 99.22 97.69

Proposed 96.75 96.73 97.48 96.43 95.84 95.36 93.15 96.23 91.32 91.53 97.27 97.95 98.85 97.24 98.06

TABLE IV
AVERAGE ± STANDARD DEVIATION OF THE MEASURED METRICS FOR THE

BASE MODELS AND THE PROPOSED ENSEMBLE STACK APPROACH.

Accuracy F1-Score Precision Recall AUPRC
(%) (%) (%) (%) (%)

EfficientNetV2
95.33 95.18 96.19 94.73 93.84
±2.09 ±3.60 ±0.57 ±5.90 ±3.85

DeiT
91.17 90.99 95.65 87.80 90.76
±1.52 ±3.64 ±1.62 ±4.84 ±4.72

Swin 94.31 93.72 95.93 94.69 93.57
TransformerV2 ±0.78 ±2.71 ±2.39 ±5.42 ±4.31

Proposed
96.46 95.94 97.52 95.00 95.14
±0.96 ±2.41 ±1.31 ±2.99 ±3.27

Not detected

Detected

Detected

Not detected

Fig. 4. Examples of predictions by the ensemble model. Left: true positives
(green bounding box); right: false negatives (red bounding box). The bounding
boxes are simply illustrative to know the position of the fire sign in the image.
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