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Abstract—Atrial fibrillation (AF) is the most common cardiac
arrhythmia and associated with a high risk for serious conditions
like stroke. The use of wearable devices embedded with automatic
and timely AF assessment from electrocardiograms (ECGs) has
shown to be promising in preventing life-threatening situations.
Although deep neural networks have demonstrated superiority
in model performance, their use on wearable devices is limited
by the trade-off between model performance and complexity. In
this work, we propose to use lightweight convolutional neural
networks (CNNs) with parameterised hypercomplex (PH) layers
for AF detection based on ECGs. The proposed approach
trains small-scale CNNs, thus overcoming the limited computing
resources on wearable devices. We show comparable performance
to corresponding real-valued CNNs on two publicly available
ECG datasets using significantly fewer model parameters. PH
models are more flexible than other hypercomplex neural net-
works and can operate on any number of input ECG leads.

Index Terms—Atrial fibrillation, ECG analysis, hypercomplex
domain, lightweight neural networks

I. INTRODUCTION

Atrial fibrillation (AF), characterised by an irregular beating
of the atrial chambers of the heart, is the most common serious
abnormal heart rhythm and a risk factor for strokes [1]. A
timely diagnosis of AF is crucial for the patient’s health.
The most reliable way to test for cardiac arrhythmia is to
analyse the electrical activity of a heart as electrocardiograms
(ECGs) [2]. However, diagnosis of AF from ECGs requires
well-trained medical professionals, and AF often remains
unrecognised during conventional short-time monitoring due
to its episodic nature in early stages [2]. In the era of Internet-
of-Medical-Things, wearable devices such as Holter monitors
and smartwatches are enabling the diagnosis of cardiac dis-
eases in daily life based on long-interval ECG signals [2],
[3]. A manual diagnosis from long-term ECG signals by
medical professionals is time-consuming [2], which results in a
bottleneck for self-care of AF. Therefore, automated analysis
of long-interval ECG signals is essential for AF detection.
Recently, deep neural networks (DNNs) have achieved success
in ECG signal analysis [4], such as arrhythmia detection [5]
and AF classification [6]. However, the complexity of large

This research was funded by the Federal Ministry of Education and
Research (BMBF), Germany under the project LeibnizKILabor with grant
No. 01DD20003.

DNNs limits their deployment on wearable devices [4], which
motivates the need for small and efficient models.

A variety of model compression techniques have been
proposed. For example, pruning aims to discard unnecessary
network connections and quantisation targets to represent
model weights with less bits [7]. Knowledge distillation builds
a shallow student model trained with a pre-trained deep teacher
model [8], [9]. In contrast to real-valued neural works used
in the above approaches, quaternion neural networks (QNNs)
build lightweight neural networks by inherently changing
the construction of layer weights. The input elements are
processed as entities of one real and three imaginary compo-
nents based on 4-dimensional hypercomplex quaternion num-
bers [10]. QNNs only need 1/4 learnable parameters compared
to corresponding real-valued neural networks and can capture
internal latent relations between input channels [10]. Never-
theless, their dimensionality is limited because operations in
hypercomplex space are only predefined in limited dimensions,
such as 4D, 8D, and 16D.

Parameterised hypercomplex (PH) neural networks [11],
[12] were proposed to overcome the dimensionality restrictions
of QNNs. They can operate in any input dimension, allowing
a flexible and domain-specific processing of multidimensional
inputs. PH layers use Kronecker product properties to con-
struct weight matrices that reduce the number of learnable
parameters to 1/n compared to corresponding real-valued
neural networks based on the hyperparameter n. Similar to
QNNs, PH models are also able to learn internal relations
between channels. Specifically, PH multiplication (PHM) [11]
has been proposed to replace real-valued matrix multiplica-
tion in fully-connected (FC) layers. PH convolutional (PHC)
layers [12] extend PHM to convolution and facilitate the
development of efficient deep convolutional neural networks
(CNNs). Therefore, PH models can help apply deep learning
to AF detection on wearable devices by using significantly
fewer parameters than real-valued models.

To the best of the authors’ knowledge, hypercomplex
DNNs have rarely been applied to ECG signals. The study
in [13] used QNNs to model cardiac velocity patterns from
ECG-related vectorcardiogram signals, which record spatio-
temporal information of cardiac electrical activity. The 4D
quaternions are suitable to model rotations in a 3D space,
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Fig. 1: Proposed PH-CNN architecture, including three mod-
ules: (1) a CNN, (2) a squeeze-and excitation (SE) attention,
and (3) a multilayer perceptron (MLP) classifier. Compared
to real-valued DNNs, parameterised hypercomplex (PH) con-
volution and multiplication replace real-valued convolutional
and fully-connected (FC) layers, respectively. We construct
separate models for two tasks: (a) AF detection, where every
sampling point of the input ECG signal gets classified as
AF/non-AF, and (b) global abnormality classification, where
the output is a vector of class probabilities.

however, not applicable to ECG signals with different numbers
of leads. In this work, we propose lightweight PH-CNNs
with PHM and PHC layers for AF detection and abnormality
classification from ECG signals. Our contributions are man-
ifold. (1) PH-CNNs can significantly reduce the number of
model parameters and achieve comparable performance to
corresponding real-valued models, enabling applications of
effective AF detection on wearable devices. (2) PH-CNNs
are flexible in input dimensions and can effectively process
ECG signals with different numbers of leads. (3) Learning
inter-channel relations between the different ECG leads with
PH-CNNs is promising to improve the model performance.
We conduct experiments to demonstrate the performance and
efficiency of the approach with several CNN architectures and
channel dimensionalities on two publicly available datasets.

II. METHODOLOGY

We propose a PH-CNN architecture that takes raw ECG
signals as input and consists of three modules (see Fig. 1): (1)
A CNN with PHC layers extracts features, (2) a squeeze-and-
excitation (SE) [14] attention mechanism with PHM improves
channel interdependencies, and (3) a multilayer perceptron
(MLP) classifier with PHM produces predictions. We construct
separate models for two objectives: (1) AF detection and (2)
rhythm/morphology abnormality classification. AF detection
aims to detect the on- and offsets of AF episodes by predicting
AF or non-AF for each sampling point, which helps in
developing personalised treatments [15]. The classification of
abnormalities, including AF, is performed at the global level
for each ECG recording.

A. Parameterised Hypercomplex Neural Network

A real-valued FC layer has a weight matrix WFC∈Rdout×din

for in- and output dimensions din and dout. Thus, the parameter
size of a real-valued FC layer is O(dout · din). The parameter
size of a real-valued 1D convolutional layer is O(d′out · d′in · k)
for a weight matrix WConv ∈ Rd′

out×d′
in×k, in- and output

dimensions d′in and d′out, and the size k of a 1D kernel.

Fig. 2: Example of a weight matrix HPHC in a parameterised
hypercomplex convolutional (PHC) layer [12] when n = 2.
HPHC is built by the sum of the Kronecker products of matrices
C1,C2∈Rn×n and D1,D2∈R(d′

out/n)×(d′
in/n)×k. The row or

column size of a Kronecker product is the multiplication of
the row or column size of the input matrices, respectively,
therefore HPHC ∈ Rd′

out×d′
in×k. In this example, the input

channel size din = 8, output size dout = 6, and kernel size
k=1. (Adapted from [11])

PHM [11] and PHC [12] layers generalise hypercomplex
operations and can operate in arbitrary domains nD, where
the dimensionality n ∈ N can be chosen depending on the
input dimensionality or adapted as a hyperparameter. The
input elements are processed as hypercomplex numbers of
dimension n. Due to weight sharing over the n dimensions, PH
models are able to capture internal relations between channels.

In a PHM layer [11], the multiplication of an input x∈Rdin

or x∈Rdin×t with a weight matrix HPHM∈Rdout×din to produce
an output y∈Rdout or y∈Rdout×t is defined as

y = PHM(x) = HPHM · x+ bFC. (1)

HPHM is built by the sum of n Kronecker products of learnable
matrices Ai∈Rn×n and Bi∈R(dout/n)×(din/n) for i=1, . . . , n,

HPHM =

n∑
i=1

Ai ⊗Bi. (2)

The hypercomplex multiplication of the weight parameters
B and the input x relies on interactions between imaginary
units, which are modelled by the algebra rules in Ai. These
define arithmetic operations, such as multiplication, in the nD
hyperspace and determine the arrangement of Bi in the final
weight matrix HPHM. PH layers learn the algebra rules as
matrices Ai directly from the data. Thus, they don’t rely on
predefined rules, which exist, for example, for the complex
(i. e., 2D) and quaternion (i. e., 4D) domains but not for 6D.

In a PHC layer [12], the convolution of an input x′∈Rd′
in×tin

with a weight matrix HPHC to produce an output y′∈Rd′
out×tout

is defined as

y′ = PHC(x′) = HPHC ∗ x′ + bConv. (3)

Analogous to HPHM, HPHC ∈Rd′
out×d′

in×k is built by the sum
of n Kronecker products of learnable matrices Ci ∈ Rn×n

and Di∈R(d′
out/n)×(d′

in/n)×k for a 1D kernel with size k (see
Fig 2). Di represents the i-th collection of convolution filters
that are organised after the algebra rules Ci,

HPHC =

n∑
i=1

Ci ⊗Di. (4)
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(a) Multi-Scopic (b) ResNet (c) Dense

Fig. 3: Configurations of the three CNN backbones. Convo-
lutional layers are denoted as “conv(kernel size - number of
channels)” with “s(stride size)” and “d(dilation rate)” (default
1). The output is then fed into an attention module (see
Fig. 1). The selected parameter values depend on the input
dimensionality: for 2-channel input CM=16, C=64, t=4,
growth rate rg=16, k=[[3, 3, 3], [5, 5, 3], [9, 7, 5]], and for 12-
channel input CM=24, C=72, t=6, rg=12, k=[3×[11, 7, 5]].

The parameter size of a PHM layer can be approximated to
O(dout · din/n) and of a PHC layer to O(d′out · d′in · k/n), if
dout · din ⪆ n4 holds. This assumption is mild for real-world
problems, where usually large numbers of filters are employed.
This leads to a parameter reduction to approximately 1/n
compared to a standard real-valued FC or convolutional layer,
respectively. Note that the dimensions din, dout, d′in and d′out
have to be divisible by n.

B. Model architectures

We select three lightweight CNN backbones: Multi-Scopic
CNN [16], ResNet [17], and DenseNet [18]. The Multi-Scopic
CNN has been used as a default model for an AF detec-
tion benchmark [19] and both ResNets and DenseNets have
been successfully applied for arrhythmia classification from
ECGs [5], [19]. The CNN model configurations are shown
in Fig. 3. The Multi-Scopic CNN consists of three parallel
CNN branches that use different dilation rates to combine
information from different receptive fields. The DenseNet ar-
chitecture consists of several dense blocks, which concatenate
output feature maps of a layer with input feature maps and
are connected by transition blocks. In ResNets, the output of
a residual block is added to the input that is upsampled in a
shortcut connection. To reduce model parameters, the residual
blocks here use separable convolutions, which consist of a
depth-wise and a point-wise operation. In depth-wise convolu-
tions, the input channels are processed separately with d′in=1.
Therefore, PHC is not used for depth-wise convolution, but for
the 1×1 point-wise convolutions in separable convolutions and
in the shortcut connection of each residual block.

Each CNN module is followed by an SE block [14], which
performs feature recalibration by multiplying input feature
maps with channel weights learnt by two FC layers. The MLP
classifier for AF detection consists of three FC layers and

TABLE I: Distribution of classes in the training, test and
validation sets for segments from the CPSC 2021 and CPSC
2018 datasets.

CPSC 2021 CPSC 2018
# non-AF pers. AF PAF

∑
NSR AF I-AVB LBBB RBBB PAC

∑
Train 35,643 12,442 6,169 54,254 374 508 290 96 729 232 2229
Val. 23,146 14,382 1,947 39,475 261 358 225 66 559 192 1661
Test 17,244 11,317 3,153 31,714 283 354 206 73 566 190 1672

a linear interpolation to recover the sequence length of the
inputs. For abnormality classification, a probability for each
class is produced by max pooling and an FC layer (see Fig. 1).

III. EXPERIMENTS AND RESULTS

A. Datasets

For this study, we use two datasets with different sources,
number of recorded ECG leads, and tasks.
CPSC 2021. We use 2-lead data from the CPSC 2021
dataset [20] for the detection of paroxysmal atrial fibrillation
(PAF) events, which are intermittent AF episodes that end
within less than a week. The data include signals from lead I
and lead II of long-term dynamic ECGs recorded with wear-
able Holter monitors at 200 Hz. The publicly available training
set consists of 1,436 records from 23 PAF, 24 persistent AF,
and 53 non-AF patients. Due to the unreleased test set, we
perform a random subject-independent split in 40 % train, 30 %
validation, and 30 % test sets. All classes appear in all subsets
with approximately the same distribution as in the entire
dataset (see Table I). Apart from AF detection, the global
rhythm is derived from the AF label of each sampling point in
order to perform a three-class classification: non-AF (no AF
rhythm present), PAF (both AF and non-AF episodes), and
persistent AF (continuous AF). During preprocessing, z-score
normalisation and a bandpass filter with cutoff frequencies of
0.5 and 45 Hz were applied, following [21]. The preprocessed
signals were then sliced into 30 s segments with 15 s overlap.
CPSC 2018. We use 12-lead ECG signals from the CPSC
2018 dataset [22] as provided in the PhysioNet/Computing
in Cardiology Challenge (CinC) 2020 [23], [24]. The dataset
includes 5,271 records that are collected from in-hospital pa-
tients at 500 Hz. Again, we split the data subject-independently
into 40 % train, 30 % validation and 30 % test sets considering
class balance (see Table I). A multi-label classification task
is performed with the following rhythm/morphology classes:
normal sinus rhythm (NSR), AF, first-degree atrioventricular
block (I-AVB), left bundle branch block (LBBB), right bundle
branch block (RBBB), and premature atrial contraction (PAC).
The signals are z-score normalised and a 10 s segment is
extracted from the middle of each record.

B. Experimental Setup

For CPSC 2021, we run experiments with n=2 in the PH
models, matching the number of ECG leads, and also with
n=4, where the input signals are zero-padded to 4 channels.
For CPSC 2018, we test n=2, 4, 6, 12 to investigate a trade-
off between accuracy and model complexity. The value of n is
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the same for all layers except for the final MLP layers, where
n=1 because dout must be divisible by n.

Direct comparison with previous studies is difficult due to
different data sets and splits. We compare the performance of
our framework with two popular deep ResNets for arrhythmia
classification [5], [25], and a Multi-Scopic CNN with SE at-
tention and an additional bidirectional long short-term memory
(LSTM) [21], following the benchmarks proposed in [19].

C. Evaluation Metrics

We evaluate the classification performance based on the un-
weighted average recall (UAR) to account for class imbalance.
For the classification of classes C, the UAR is based on true-
positive (TP) and false-negative (FN) samples,

UAR =
1

|C|
∑
c∈C

TPc

TPc + FNc
. (5)

To assess the significance of the comparison between UARs of
PH-CNNs and real-valued networks, we perform a one-tailed
z-test on the test sets. In addition, the challenge score SAF of
CPSC 2021 [20] is used to evaluate the correct detection of
AF events. SAF evaluates the overall rhythm prediction as well
as the detection of start and end points of an AF episode.

D. Model Training

The models are implemented using the torch_ecg pack-
age [26], [19]. We generally follow the training setup proposed
in their CPSC 2021 and CinC 2020 (for CPSC 2018) bench-
mark tests. We use the Asymmetric Loss [27] to handle the
class imbalance, a learning rate of 0.0001 and the AMSGrad
variant of the AdamW optimiser [28]. The best model is
determined based on binary-cross-entropy (for AF detection)
or global accuracy (for abnormality classification) on the
validation set. The batch size is set to 64. The code is available
at: https://github.com/leibniz-future-lab/Hypercomplex-ECG.

E. Results and Discussion

AF Detection. Using PH-Multi-Scopic as the CNN back-
bone yielded the highest score SAF for detecting the start
and end points of AF episodes on CPSC 2021 data (see
Table II). This value is also comparable to most challenge
submissions [20], however, a direct comparison is difficult
due to different test sets. PH-Multi-Scopic (n=2, p<0.001
in one-tailed z-test) and PH-ResNet (n=4, p<0.05) models
achieve a higher UAR than the corresponding real-valued
networks. A possible explanation is the ability of PH layers
to learn inter-channel relations due to weight sharing. These
two models still achieve high UARs when the model is further
compressed with n=4. However, the UAR decreases for PH-
DenseNet (n=2, p<0.001), while SAF is comparable. Both
metrics are calculated from the same sequence output, but the
UAR weights all classes equally and doesn’t evaluate the AF
on-/offsets. The PH-DenseNets generalise worse on the PAF
class in the validation and test sets, possibly due to DenseNet’s
simpler structure and limited ability to learn useful features
from this data. The previously proposed models [5], [25],

TABLE II: Comparison between parameterised hypercomplex
(PH) models with hyperparameter n and real-valued models (n
is ‘-’) for AF detection on the 2-lead ECG data in CPSC 2021.
Results are reported for Unweighted Average Recall (UAR)
and Score SAF from CPSC 2021 on the validation and test
sets. C.Par. = CNN Parameters, Multi-Sc. = Multi-Scopic.

Network n #C.Par. #Params UAR in % ↑ SAF ↑

Val Test Val Test

ResNet [5] – 26,499k 26,746k 87.40 83.86 1.3719 1.3804
ResNet [25] – 8,708k 9,463k 81.24 82.04 1.3389 1.3622
Multi-Sc.+LSTM [21] – 138k 2,850k 84.16 87.14 1.3917 1.4258

Multi-Scopic – 138k 213k 81.25 83.51 1.8944 2.0486
PH-Multi-Scopic 2 71k 112k 82.06 86.06 1.6170 2.0560
PH-Multi-Scopic 4 38k 61k 88.79 82.62 1.6989 2.4488

ResNet – 720k 934k 80.14 86.17 1.3392 1.4622
PH-ResNet 2 373k 497k 86.22 81.88 1.3721 1.4424
PH-ResNet 4 200k 279k 88.61 86.68 1.4198 1.4629

DenseNet – 369k 423k 87.29 83.49 1.4065 1.3636
PH-DenseNet 2 187k 215k 83.44 78.80 1.3523 1.3672
PH-DenseNet 4 98k 113k 76.26 78.72 1.3490 1.3431

[21] achieve comparable UARs to the best proposed small-
scale model, while using significantly more parameters. They
also have a notably lower SAF than PH-Multi-Scopic and are
therefore worse at detecting the start and end of AF episodes.

Abnormality Classification. The classification performance
of PH and real-valued models on the 12-lead CPSC 2018 data
is comparable for all three CNN backbones (see Table III). The
highest UAR overall is achieved by PH-Multi-Scopic models.
An increased n doesn’t lead to a declining performance,
therefore, we observe no large trade-off between increased
parameter saving and classification performance in this setting.
This could again be explained with the ability of PH models
to capture the relations between different channels, especially
for a larger n that covers all input channels. Again, the
previously proposed models [5], [25], [21] don’t exceed the
classification performance of the small-scale models while
using significantly more parameters (p<0.05 for PH-Multi-
Scopic n=12 and ResNet [5]).

Model compression. A large parameter reduction can be
observed using PHC layers in all CNNs, saving already
approximately -50 % CNN parameters for n=2. The number
of parameters is further reduced as n increases, leading to
a substantial model compression when n = 12 on 12-lead
data, where the number of parameters in all three CNNs
is reduced by more than 80%. Even though the depth-wise
convolutions in ResNet couldn’t be adapted to PHC, the
number of parameters are notably reduced due to PH point-
wise convolutions. The CNN module accounts for the vast
majority of the model size, so its compression has the greatest
impact. PHM layers also reduce the parameter size of the
FC layers in the SE and MLP module to approximately 1/n,
resulting in a large overall parameter reduction. The value of
n can be chosen flexibly during model creation based on the
data dimensionality and desired model compression.
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TABLE III: Comparison between parameterised hypercomplex
(PH) models with hyperparameter n and real-valued models (n
is ‘-’) for abnormality classification on 12-lead ECG data from
CPSC 2018. Results are reported for Unweighted Average
Recall (UAR) on the validation and test sets.

Network n #CNN Params #Params UAR in % ↑

Val Test

ResNet [5] – 26,511k 26,514k 92.43 90.34
ResNet [25] – 8,719k 8,726k 91.71 89.09
Multi-Sc.+LSTM [21] – 430k 2,135k 92.43 89.99

Multi-Scopic – 430k 473k 90.24 90.68
PH-Multi-Scopic 2 219k (-49%) 252k 91.53 88.64
PH-Multi-Scopic 4 113k (-74%) 141k 91.59 89.65
PH-Multi-Scopic 6 80k (-81%) 106k 93.14 89.59
PH-Multi-Scopic 12 71k (-83%) 98k 90.55 92.03

ResNet – 926k 1,096k 91.02 90.20
PH-ResNet 2 478k (-48%) 607k 91.50 89.88
PH-ResNet 4 253k (-73%) 361k 90.89 90.91
PH-ResNet 6 180k (-81%) 281k 91.95 90.77
PH-ResNet 12 122k (-87%) 173k 90.82 89.78

DenseNet – 499k 511k 90.03 89.10
PH-DenseNet 2 253k (-49%) 262k 92.24 89.85
PH-DenseNet 4 132k (-74%) 139k 90.56 87.90
PH-DenseNet 6 95k (-81%) 102k 91.16 89.32
PH-DenseNet 12 96k (-80%) 104k 92.68 90.96

IV. CONCLUSION AND OUTLOOK

We proposed a lightweight PH neural network framework
for AF detection from ECG signals based on PH operations
for multiplication and convolution. We demonstrated compa-
rable performance to corresponding real-valued networks for
different CNN backbones on two datasets, while significantly
reducing the parameter size. The dimensionality n can be
chosen flexibly based on the data or tuned for further com-
pression. In future work, PH architectures can be combined
with other advanced model compression techniques, such as
knowledge distillation [8], to further reduce the model size.
Implementation on wearable devices is further limited by the
need for low computational complexity and power consump-
tion, which should also be investigated in the future. PH layers
can also benefit the automatic analysis of other data types from
wearable devices, such as photoplethysmography (PPG).
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