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Abstract—A combination of deep reinforcement learning and
supervised learning is proposed for active sequential hypothesis
testing in completely unknown environments. We make no as-
sumptions about the prior probability, the action and observation
sets, as well as the observation generating process. Experiments
with synthetic Bernoulli and real cybersecurity data demonstrate
that our method performs competitively and sometimes better
than the Chernoff test, in both finite and infinite horizon
problems.

Index Terms—Active hypothesis testing, POMDPs, Reinforce-
ment learning, Recurrent Neural networks, Controlled sensing,
Supervised learning, Sensor networks, Anomaly detection

I. INTRODUCTION

In active sequential hypothesis testing (ASHT), a decision
maker actively conducts a sequence of experiments in order to
infer the underlying hypothesis from a finite set of hypotheses.
The problem finds numerous applications including anomaly
detection [1], medical diagnosis [2], radar assisted target
search [3] and content search applications [4]. It has been
extended to environments involving passive eavesdroppers [5]
or active adversaries [6]. Deep reinforcement learning (DRL)
techniques such as DQN [7] and deep actor critic algorithms
were recently applied to ASHT (see [8], [9] and [6]). In these
studies, the DRL agent selects actions based on beliefs over
all possible hypotheses. Multiagent DRL methods for anomaly
detection were proposed in [10] and [11].

In this work we consider belief free methods. The states of
Deep recurrent neural networks (RNN)s are used as proxies for
beliefs. We combine RNNs with reinforcement learning (RL)
to address ASHT in environments with unknown observation
probabilities and possibly infinite or continuous observations.
At each time instance, the decision maker selects which ex-
periment to conduct based on the history of past observations
and actions. This is performed by a RNN network called
RNNpolicy. Once the episode is terminated, the inference
network, termed RNNinference is used to infer the hypothesis.
In the infinite horizon setting, an additional RNN network,
the so called RNNmonitor monitors the decision maker’s
interaction with the environment and determines whether the

experiments should terminate or continue. We assume that a
training environment or a large dataset is available to train
the networks. The actual environment in which the networks
will be deployed can be slightly different, and the observation
probabilities are unknown. Therefore, the agent can not take
advantage of the belief vectors. In the case of anomaly
detection over sensor networks [1], the size of the belief
vector increases exponentially with the number of sensors.
Consequently, quick decision making on large sensor networks
by recursively updating beliefs and passing it through a large
neural network to select the next query, may prove infeasible.

We apply a training procedure that includes the following
steps. First we train the RNNpolicy on an artificial simu-
lation environment using a DRL algorithm. A large dataset
of actions and observations is created using the RNNpolicy
network. Then the RNNmonitor is trained on data generated
by the RNNpolicy using backpropagation [12]. Finally the
pair RNNpolicy-RNNmonitor is used to create a second large
dataset and the RNNinference is trained using backpropaga-
tion.

A. Related work

In his seminal work [13], Chernoff proposed a heuristic
called the Chernoff test and proved that it is asymptotically
optimal under certain assumptions. In [14], a new variant of
the test was introduced in the general multi-hypothesis testing.
In [15] ASHT is modeled as a cost minimisation POMDP. The
cost depends on the stopping time and the error probability.
In [8], ASHT is modeled as a confidence maximisation belief
MDP and a recurrent DQN [7] procedure is proposed and
numerically shown to perform better than other heuristics.
Similarly, in [9] a deep actor critic procedure is shown to
perform better than the Chernoff test in environments that
require high confidence levels.

B. Our contribution

We propose a combination of DRL algorithms and RNNs to
solve ASHT problems in completely unknown environments.
We make no assumptions about the prior probability of the
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hypotheses, the observation generating process or the type of
observations. In fact continuous action spaces are allowed. The
only requirement is access to a training environment, or an
appropriate training dataset. We compare our approach to the
modified Chernoff test of [14] in environments with discrete,
finite actions and observations, and show that the proposed
method achieves competitive results and sometimes performs
slightly better.

The rest of this paper is organised as follows. ASHT is
defined in section II. The proposed method is presented in
section III for finite and infinite horizons. Comparisons with
the Chernoff test are given in sections IV and V using anomaly
detection environments. Further information about the experi-
ments and sample efficiency analysis is presented as appendix
in the extended version at https://arxiv.org/abs/2303.10623.

II. PROBLEM STATEMENT

Let X = {0, 1, ..., N} be a finite set of hypotheses. The
random variable X defines the true hypothesis. At each time
t > 0 a decision maker chooses an action at ∈ A. Based on
at and X = x, an observation yt ∈ Y is generated. Typically
it is assumed that these observations are i.i.d, sampled from a
known distribution pat

X ≜ P [Y |X, at], while both actions and
observations belong to finite sets. None of these assumptions
are required in this work. Actions aim to assist inference of
the true hypothesis. They rely on the information available at
time t: It = {a1:t−1, y1:t−1}, and are sampled from a belief
based policy. For a given action at and observation yt, the
belief on each hypothesis i ∈ X is updated recursively as

ρt+1(i) = ρt(i)
pat
i (yt)∑

j ρt(j)p
at
j (yt)

. (1)

ρ0 is the prior probability that a hypothesis is true.
The inferred hypothesis is denoted by X̂t and is the result

of the inference policy acting on the information set.
The quality of inference is measured by several indicators.

The error probability is expressed in terms of beliefs as γt =
P [X̂t ̸= X] = 1 − maxi ρt(i). The average confidence level
is given by

C(ρ) =
∑
i∈X

ρ(i) log

(
ρ(i)

1− ρ(i)

)
. (2)

The following index

LLt = log
pît(y1:t, a1:t)

maxj ̸=ît
pj(y1:t, a1:t)

, (3)

where ît is the most likely hypothesis monitors performance
in the infinite horizon setting. It provides an asymptotically
optimal stopping rule: the agent terminates the experiment
the first time t for which LLt > − log c, where c is a
positive real valued parameter. Upon termination, the inference
strategy selects the hypothesis ît that maximizes the aposteriori
probability (MAP decoding) or the likelihood (ML decoding).
Often a uniform prior is employed, in which case the MAP
and ML decoding rules coincide. For further details please see
[8] and [6].

Information Set
It

RNNmonitor

RNNinference RNNpolicy

continueterminate

Fig. 1: Architecture. RNNmonitor decides whether to con-
tinue based on the information set. Then either RNNinference
guesses the underlying hypothesis or RNNpolicy continues
with experiment selection.

An asympotically optimal policy is given by the Chernoff
test. At each time t, actions are sampled from the distribution

gt = max
g

min
j ̸=ît

∑
a

g(a)D(pa
î
||paj ). (4)

III. ARCHITECTURE AND TRAINING PROCEDURE

In this section, we combine DRL and supervised learning
to tackle ASHT without the use of belief vectors. We assume
that we have access to a training environment or alternatively,
to a large dataset, based on which we can build a simulator.
A schematic plot of the proposed architecture is given in fig
1.

Two supervised neural networks are in charge of termination
time and inference, and one (or two for actor critic algorithms)
is in charge of experiment selection. We employ recurrent
neural networks (RNN) rather than feedforward neural net-
works to take advantage of their capacity to model dynamic
input output systems. Simple RNNs are prone to numerical
instability problems, most notably vanishing and exploding
gradients. To remedy these issues, several variations have been
proposed, most notably, long short term memory networks
(LSTM)s [16] and Gated recurrent units (GRU)s [17], which
have been successfully applied to POMDP agents, [18] and
[19]. In this work we consider both LSTM and GRU networks.

Under the infinite horizon setting we employ two recurrent
neural networks for decoding, RNNmonitor and RNNinfer-
ence. The first network monitors the environment at each time
instance. The value determined by its output is used to decide
whether the process continues or terminates on the basis of
a threshold rule. The second network is activated when the
RNNmonitor decides termination. It produces an estimate of
the underlying true hypothesis. Under the fixed finite horizon
case, the RNNmonitor becomes redundant. The structure of
the two recurrent networks is identical except from the final
layer which performs the regression and classificatin tasks
respectively.

Each network is fed by the sequence of action and obser-
vation pairs. At each time t, a tuple (at, yt) passes through
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Fig. 2: A high level overview of RNNInference. Each action
observation pair (at, yt) passes through a RNN architecture
and outputs ot. All outputs are averaged and passed through a
feed forward layer. Finally a softmax activation function pro-
duces an estimate of the true hypothesis. A similar architecture
is employed by RNNMonitor, without the softmax function.

the RNN cell and an output ot is generated. The mean of
all outputs goes through a feed forward layer that outputs the
prediction. In the case of classification, the feed forward layer
is followed by a softmax activation function. The loss function
of RNNinference is the cross entropy loss between the true
hypothesis X and the predicted hypothesis. The loss function
of RNNmonitor is the mean squared error loss. All networks
are developed using the pytorch framework [20]. A high level
overview of RNNinference is provided at fig 2.

Training of the neural networks takes place in three phases.
First, we train the RNNpolicy network using reinforcement
learning on an artificial simulation environment. Then the
RNNmonitor and subsequently the RNNinference are trained
using the adam optimizer [21]. In the fixed horizon setting,
training of the RNNmonitor is deactivated.

The RNNpolicy is initialised with random parameters. The
artificial simulation environment is created as follows. At each
training episode the underlying hypothesis i is sampled from
X according to ρ0. At each time t the agent chooses an action
at based on the state of the recurrent neural network and its
most recent observation yt−1 (action a1 is chosen randomly).
An observation yt is sampled from Y according to P [Y |X =
i, a = at]. The training environment internally updates the
belief vector ρt. The reward provided to the agent is the error
improvement γt−1−γt. After T time steps the training episode
terminates. In the finite horizon setting, T defines the horizon

TABLE I: P [Y = 1|at, X] under training

X = 0 X = 1 X = 2 X = 3
A 0.2 0.8 0.2 0.8
B 0.2 0.2 0.8 0.8

TABLE II: P [Y = 1|at, X] under testing

X = 0 X = 1 X = 2 X = 3
A 0.25 0.75 0.25 0.75
B 0.15 0.15 0.85 0.85

length. In the infinite horizon setting, we set T to a large value
to ensure sufficient exploration. We use a reliable open source
implementation of recurrent PPO [22] (contributed version).

Upon completion of phase 1 and training of the RNNpolicy
network, a new dataset is generated by randomly selecting the
horizon of each episode. Each data point consists of a sequence
of actions and observations labeled by the error probability
at the final time step. The resulting dataset is used to train
RNNmonitor in stage 2.

Finally training of RNNinference is realized via a new
dataset generated as follows. At each time instance t of each
training episode, RNNmonitor outputs an approximation of the
error probability γ̄t. If γ̄t < c, where the hyperparameter c is a
user defined threshold, the episode terminates, else RNNpolicy
continues with the experiment selection. The label of each data
point is the underlying true hypothesis. The desired dataset is
obtained by repeating this procedure for multiple episodes.

In the execution phase, the three networks are run and
evaluated in a testing environment which slightly differs from
the one they are trained on.

IV. CASE STUDY: ANOMALY DETECTION

We consider an anomaly detection example involving two
sensors A and B that detect anomalies in their proximity. There
are 4 possible hypotheses. X = 0 means there is no anomaly
(the system is in safe state). X = 1 and X = 2 mean there is
an anomaly near sensors A and B respectively. Finally, X = 3
means there are anomalies near both sensors. We assume a
uniform prior. We create two slightly different environments,
one for training the DRL agent and the RNN decoders and
one for testing their performance. The observation models are
summarized in tables I and II.

First we examine how efficiently LSTMs and GRUs learn to
map action and observation sequences to γt, LLt, Ct and ît,
where ît is the most likely hypothesis. We follow the modified
Chernoff strategy in the training environment as described in
[14], and collect a dataset of 60000 sequences. The first 50000
are used for training and the rest for validation. We also build
a test set of 10000 sequences using the testing environments.
We pick a fixed horizon at the beginning of each episode,
randomly in the range 5-50.

We consider unidirectional and bidirectional RNNs with two
hidden layers and size in the range 50-400. The RNN with the
best score on the validation set is used in the test set. In case
of ties, the simpler architecture is preferred. The results for all
5 metrics are shown in table III.
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TABLE III: Test scores and size parameters.

LSTM GRU
best hidden size for LLt 400(BI) 300 (BI)

best hidden size for ĵt 200 200
best hidden size for C(ρt) 250(BI) 250(BI)

best hidden size for γt 200 250
precision on ĵt 0.9996 0.9967

recall on ĵt 0.9996 0.996
f1 score on ĵt 0.9996 0.9996
MAE for LLt 13.25 14.397

MAE for C(ρt) 0.952 0.945
MAE for γt 0.00085 0.0019

TABLE IV: Average error probability over 10000 episodes

T PPO-LSTM PPO-GRU Chernoff
10 0.152 0.151 0.162
25 0.0396 0.0341 0.0312
50 0.0078 0.008 0.0017

100 0.0008 0.0007 0.00005

We note that as the error probability becomes small, both
LLt and Ct can be large. Moreover, they might take small or
even negative values for small horizons. Hence we discarded
all samples where LLt > 100, because the maximum absolute
error (MAE) was very large. On the other hand γt is always in
the range [0, 1]. It can be seen from table III that both LSTMs
and GRUs learn ĵt and γt very accurately. For this reason, the
stopping rule in the infinite horizon setting employs the error
probability.

We explore different horizons of length 10, 25, 50, and
100. For each horizon, the PPO agent is trained and a dataset
that has 60000 different sequences of actions and observations
is generated. Both decoders are unidirectional RNNs with 2
hidden layers of the same size. The GRU decoder has 250
hidden units and the LSTM decoder 200 units. When paired
with a GRU or an LSTM decoder, for horizons 10-50, PPO’s
performance is comparable to that of the Chernoff test 1. In
fact, for T = 10 it achieves a smaller error probability. For
T = 100, the Chernoff test achieves a significantly smaller
error probability. The GRU decoder performs slightly better
than the LSTM decoder.

In the infinite horizon case, we use the PPO agent previously
trained for T = 50. The dataset consists of 60000 training
examples. The horizon of each episode is chosen uniformly in
the range [1,50]. The LSTM network approximates the error
probability. When the network detects that the error probability
is below a user defined threshold c, the episode terminates.
Using the agent and the network a new dataset of 60000
examples is generated and used to train another LSTM that
infers the underlying hypothesis. We tested the PPO agent
based on the LSTM networks in the test environments for
10000 episodes. We repeated the procedure for GRU networks.
The test results for different tolerance levels are demonstrated

1Note that the Chernoff test has an advantage because it knows the actual
error probabilities of the testing environment. It can not be deployed in the
belief free setting. In contrast, our model has only seen data from the training
environment.

TABLE V: Average stopping time and error probability

(a) stopping time

c PPO-LSTM PPO-GRU Chernoff
0.3 5.85 6 4.58
0.2 7.41 8 7.73
0.1 11.58 13 12.61
0.05 12.66 16.14 12.164

(b) error probability

c PPO-LSTM PPO-GRU Chernoff
0.3 0.198 0.205 0.248
0.2 0.134 0.164 0.131
0.1 0.075 0.092 0.046
0.05 0.043 0.051 0.038

TABLE VI: Average error probability in the four sensors case

horizons PPO+LSTM PPO+GRU Chernoff
10 0.48 0.49 0.53
25 0.247 0.245 0.234
50 0.0698 0.0699 0.071
100 0.0238 0.0157 0.008

in table V.
The LSTM networks are bidirectional with 2 hidden layers

of 200 neurons. They also employ dropout with probability
p = 0.2. The GRUs are bidirectional with 4 hidden layers of
250 neurons. Again, dropout is used with p = 0.2.

Contrary to the finite horizon, LSTM decoders perform bet-
ter than GRU decoders. When the PPO agent is combined with
LSTM decoders, it terminates at the desired error probability
level slightly faster than the Chernoff test in 2/4 experiments.

V. FURTHER EXAMPLES

Next we consider a larger anomaly detection problem.
Four sensors monitor four independent random processes. Any
number of processes can be abnormal, therefore there are 16
different hypotheses. Proceeding as in the previous chapter, we
build two slightly different training and testing environments.
When a process is abnormal in the training environment the
sensor outputs 1 with probability 0.8 and 0 with probability
0.2. When the process is normal the numbers are reversed.
In the testing environment, the first two sensors output 1 with
probability 0.85 when the processes are abnormal, and the last
two output 1 with probability 0.75.

We repeat the fixed horizon experiments, only this time,
the training dataset consists of 150000 examples. The network
pairs are tested for 10000 episodes. The results for different
horizons are summarized in table VI. Both network pairs
perform better than the Chernoff test for horizons of length 10
and 50. For horizons 25 and 100, the Chernoff test performs
slightly better.

Next we consider an anomaly detection example that lies
closer to real world data, namely the windows 10 dataset from
the TON IOT cybersecurity data [23]. More information about
how the environment works is provided in the extended version
of this paper available at arxiv.

We repeat the experiments of table VI. The results are
shown in table VII. Our method performs better than the
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TABLE VII: Average error probability out of 10000 episodes
for the cybersecurity data.

horizons PPO+LSTM PPO+GRU Chernoff
10 0.0632 0.0634 0.2314
25 0.0064 0.0057 0.0194
50 0001 0.0002 0.0001

100 0.001 0 0

Chernoff test for horizons T = 10 and T = 25, and the
difference for T = 50 and T = 100 is very small (one error
out of 10000 episodes).

The sample efficiency of the supervised decoders and the
recurrent PPO algorithm are analyzed in the extended version.
The DRL algorithm requires far more samples than the super-
vised decoders.

VI. CONCLUSION

We have demonstrated that model free recurrent DRL
combined with RNN decoders can successfully be applied
to ASHT environments. Unlike other approaches, our method
does not need to recursively construct large belief or likelihood
vectors, hence it can scale up to very large environments.
We have also employed different training and testing envi-
ronments. The proposed method performs competitively with
the asymptotically optimal Chernoff test, both in finite and
infinite horizon problems, despite the lack of knowledge of
the observation probabilities. For smaller horizons it usually
performs better.

In future work we will seek to improve the sample complex-
ity of the DRL part of our method, and apply offline (batch)
reinforcement learning for large environments when there is
not an accurate simulator and only a fixed dataset. We will
consider replacing LSTMs and GRUs with transformers [24].
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