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Abstract—We study a structured multi-agent multi-armed
bandit (MAB) problem in a non-stationary environment. Agents
in the system face the same piecewise-stationary MAB problem.
Consequently, they share information so far allowed by the graph
links to accelerate learning. Each agent aims at minimizing the
regret of sequential decision-making, which is the expected total
loss of not playing the optimal arm at each time step. We propose
a solution to that problem, RBO-Coop-UCB, which involves an
efficient multi-agent UCB algorithm with a Bayesian change point
detector as its core, enhanced by a collaboration mechanism
for performance improvement. Theoretically, we establish an
upper bound for the expected group regret of RBO-Coop-UCB.
Numerical experiments on real-world datasets demonstrate that
our proposed method outperforms the state-of-the-art algorithms.

Index Terms—Change point detection, distributed learning,
multi-armed bandit, multi-agent cooperation

I. INTRODUCTION

Multi-armed bandit (MAB) is a sequential optimization prob-
lem, which is applicable in several real-world application areas
such as online advertisement [1], wireless communications
[2], and personalized medicine [3]. In the seminal MAB, an
agent selects an action at each round, aiming to develop an
action selection policy to minimize its cumulative regret over
all rounds. The majority of research on the MAB problem
focuses on single-agent policies, neglecting the social elements
of the applications of the MAB framework; nevertheless, the
ever-increasing significance of networked systems and large-
scale information networks encourages studying multi-agent
MAB problems as a framework to optimize decision-making
in distributed systems. Reference [4] studies the distributed
multi-agent MAB (MAMAB) problem and proposes an online
indexing policy based on distributed bipartite matching. In [5],
the authors introduce the notion of sociability to model the
likelihood probabilities that one agent observes its neighbors’
choices and rewards in the network graph.

Most previous research on MAB focuses on either the
stochastic- or adversarial environment, undermining the “in-
termediate” setting, where the reward distribution of each
arm is piecewise-constant and shifts at some unknown time
steps called the change points. The cutting-edge research on
piecewise-stationary MAB includes two categories: (i) Passively
adaptive methods, where the agent makes decisions based on
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the most recent observations while unaware of the underlying
distribution changes [6]–[8]; and (ii) Actively adaptive methods,
where a change point detector subroutine to monitor the reward
distributions are incorporated [9]–[11]. Several studies show
the superior performance of the latter category over the former
[11], [12]; As such, we focus on active adaptation.

The research works mentioned above study multi-agent
MAB and non-stationary MAB; nevertheless, the research
community neglects the combination of the two problems to
a great extent. On the one hand, multi-agent MAB problems
consider the social components and distributed structure of
the applications of the MAB framework, which is essential in
recent technological development [13]. On the other hand, the
assumption of a stationary environment rarely holds in practice.
Piecewise-stationary bandit algorithms address the challenges
caused by non-stationary environments. Therefore, studying
the two problems simultaneously is crucial.

In this paper, we take the first step to unify these two
independent strands of bandit research by formulating a
piecewise-stationary MAMAB problem. Our main contributions
are as follows:

• We propose an efficient running consensus algorithm
for piecewise-stationary MAMAB, called RBO-Coop-
UCB. The method integrates a change point detector,
namely, restarted Bayesian online change point detector
(RBOCPD) [14] and a MAMAB algorithm in its core.

• We incorporate an effective cooperation mechanism in
RBO-Coop-UCB, not only in arm selection but also in
the restart decision part. The cooperation framework is
generic and applicable to enhance various actively adaptive
policies in piecewise-stationary bandit problems.

• For any networked multi-agent systems, we establish the
group regret bound O(KNM log T + K

√
MT log T ),

where K, M , N and T respectively denote the number
of agents, arms, change points and time steps. To the best
of our knowledge, this is the first regret-bound analysis
for bandit policies that include RBOCPD.

• By experiments on a real-world dataset, we show that our
proposed algorithm, RBO-Coop-UCB, outperforms the
state-of-the-art policies.

II. PROBLEM FORMULATION

We consider a K agent piecewise-stationary MAB problem.
We use M to denote the time-invariant action set and K to
denote the agent set. Besides, fm

t is the reward distribution
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of arm m at time t with mean µm
t . At each time step, each

agent k ∈ K pulls one arm m ∈ M and obtains a reward
sampled from fm

t . The agents form a network modeled by an
undirected graph G(K, E), where E = {e(k, j)}k,j∈K is the
edge set. Agents k and j are neighbors if e(k, j) ∈ E and
e(k, k) ∈ E , ∀k ∈ K. Such a pair can observe each others’
selected arms and sampling reward. We use Ikt to show the
action of agent k and Xm

t is the sampling reward of arm m
at time t.

Assumption 1. [14] Let N denote the overall number of
piecewise-stationary segments observed until time T , N =
1 +

∑T−1
t=1 1{fm

t ̸= fm
t+1 for some m ∈M}. The reward dis-

tributions of arms are piecewise-stationary Bernoulli processes
B(µm

t ) such that there exists a non-decreasing change point
sequence (νn)n∈[1,N−1] ∈ NN−1 verifying{
∀n ∈ [1, N − 1], ∀t ∈ [νn, νn+1), ∀m ∈M, µm

t = µm
n

ν1 = 1 < ν2 < . . . < νN = T.

Each agent k measures its performance by its (dynamic)
regret, i.e., the cumulative difference between the expected
reward obtained by the optimal arm I∗t at time t, and the
expected reward obtained by action Ikt selected by agent k

Rk
T =

T∑
t=1

[E(XI∗
t

t )− E(XIk
t

t )]. (1)

In the multi-agent setting, we study the network performance
in terms of the regret experienced by the entire network RT =

K
∑T

t=1 E(X
I∗
t

t )−
∑K

k=1

∑T
t=1 E(X

Ik
t

t ).

III. THE RBO-COOP-UCB ALGORITHM

Our decision-making policy, RBO-Coop-UCB, combines a
network UCB algorithm with a change-point detector running
on each arm, which is based on Bayesian change point
detection strategy. Our work is closely related to the studies
on multi-agent cooperative bandit algorithms [5], [13], [15]
and the Bayesian change point detection [14]. It has three
building blocks: (1) A cooperative UCB structure, which
guides the systems to learn the optimal arm in each piecewise-
stationary segment; (2) A change point detector [14] described
in Section III-A; and (3) A cooperation mechanism for change
point detection to filter false alarms.

A. Restarted Bayesian Online Change Point Detector

Let rt be the number of time steps since the last change
point (current run length), and X1:t = (X1, . . . , Xt)
the data observed so far, which is generated from
the piecewise-stationary Bernoulli process. The
seminal Bayesian strategy computes p(rt|X1:t) as
the posterior distribution over the current runlength
rt [16] and uses the message-passing algorithm to
recursively infer the run length distribution p(rt|X1:t) ∝∑

rt−1
p(rt|rt−1)p(Xt|rt−1,X1:t−1)p(rt−1|X1:t−1). In

RBOCPD, it assumes that each possible value of rt
corresponds to one specific run length forecaster. The

loss ls,t of the forecaster s at time t, which is related to
p(Xt|rt−1,X1:t−1), follows as [14]

ls:t = − logLp(Xt|Xs:t−1), (2)

where Lp(·) is the Laplace predictor. Lp(Xt+1|Xs:t) takes a
sequence Xs:t ∈ {0, 1}ns:t as input with ns:t = t−s+1 being
the length of Xs:t. It predicts the value of the next observation
Xt+1 ∈ {0, 1} as

Lp(Xt+1|Xs:t) =

{∑t
i=s Xi+1

ns:t+2 , if Xt+1 = 1,∑t
i=s(1−Xi)+1

ns:t+2 , if Xt+1 = 0,
(3)

where ∀X ∈ {0, 1}, Lp(X|ϕ) = 1
2 corresponds to the uniform

prior given to the process generating µc.
The weight ϑr,s,t of forecaster s at time t for starting time

r is the posterior ϑr,s,t = p(rt = t− s|Xs:t), where

ϑr,s,t =

{
ηr,s,t

ηr,s,t−1
exp(−ls,t)ϑr,s,t−1, ∀s < t

ηr,t,t × Vr,t−1, s = t
(4)

by using the hyperparameter ηr,s,t, which is related
to p(rt|rt−1). Vr,t−1 is the initial weight Vr:t−1 =

exp
(
−L̂r:t−1

)
for some starting time r, where L̂r:t−1 =∑t−1

r′=r lr′:t−1 is the cumulative loss incurred by the forecaster
r from r until t − 1. Based on (2), the cumulative loss
L̂r:t−1 =

∑t−1
r′=r − logLp(xt−1|xr′:t−2). The change point

detection (restart) decisions are made based on the forecaster
weight. For any starting time r ≤ t,

Restartr:t = 1{∃s ∈ (r, t] : ϑr,s,t > ϑr,r,t}. (5)

The intuition behind (5) is the following. At each step without
change, the forecaster distribution concentrates around the
forecaster launched at the starting time r. Thus, if distribution
ϑr,s,t changes, then a certain change point appears.

The restarted Bayesian online change point detector is
summarized in Algorithm 1

Algorithm 1 RBOCPD [14]: RBO(X1:t, η1,s,t)

1: Require: Observations X1:t and hyperparameter η1,s,t.
2: r ← 1, ϑr,1,1 ← 1, ηr,1,1 ← 1.
3: for i = 1, 2, . . . , t do
4: Calculate ϑr,s,i of each s ∈ (r, i] according to (4).
5: Calculate Restartr:i according to (5).
6: if Restartr:i = 1 then
7: return True
8: end if
9: end for

10: return False

B. RBO-Coop-UCB Algorithm

Our proposed algorithm, RBO-Coop-UCB, is a Network UCB
algorithm that allows for some restarts during the decision-
making process. The agents run the RBO-Coop-UCB policy
in parallel. To guarantee sufficient samples from each arm
for change point detection, each arm will be selected several
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times in the forced exploration steps. Let Ikt and Xk,m
t

denote the selected arm and the reward of agent k at time
t, respectively and Xk,m

t be the i.i.d copies of Xm
t . The total

number of times that agent k observes rewards from option
m is Nk,m

t =
∑t

t′=1

∑K
j=1 1{I

j
t′ = m}1{e(k, j) ∈ E}. The

empirical rewards of agent k by pulling arm m at time t yields

µ̂k,m
t =

Sk,m
t

Nk,m
t

, (6)

where Sk,m
t =

∑T
t′=1

∑K
j=1 X

k,m
t′ 1{Ikt′ = m}1{e(k, j) ∈ E}

is the accumulated reward from option m in t rounds. At every
step, if an agent is in a forced exploration phase, it selects each
arm several times to ensure sufficient number of observations
for each arm; otherwise, it chooses an arm according to the
sampling rule described in Definition 1.

Definition 1. At time t, agent k follows the sampling rule

1{Ikt = m} =

{
1, if Qk,m

t = max{Qk,1
t , . . . , Qk,M

t }
0, otherwise

(7)

with Qk,m
t = µ̂k,m

t + Ck,m
t , Ck,m

t =

√
ξ(αk+1) log(t−τk)

Nk,m
t

, and

τk is the last change point detected by agent k. ξ ∈ (0, 1] is a
constant. Besides, αk =

ηk−ηavg
k

ηk
is an agent-based parameter

with ηk being the number of k’s neighbors. Finally, ηavgk =
1
ηk

∑
e(k,j)∈E ηj is the average degree of neighbors. We assume

that ∀k ∈ K, ηavgk ≤ 2ηk, therefore ∀k ∈ K, αk ∈ (−1, 1).

Remark 1. Different values of αk imply different exploration
rates for the agents. Those with more neighbors benefit from
more observations and thus less uncertainty for the expected
reward estimation. That increases their exploitation potential
and reduces the usefulness of the broadcast information, which,
in turn, decreases the neighbors’ exploitation potential [15]. To
improve the group performance by regulating the exploitation
potential across the network, we propose the heterogeneous
explore-exploit strategies with sampling rule in Definition 1.

For each agent k, the set X k,m
t = Xτk:Nk,m

t
contains all

of the observed feedback from arm m since the last change
point τk. Note that, at each step t, the feedback includes not
only the sampling reward Xk,m

t of agent k but also those
of its neighbors, which agent k collects as Xk,m

t . The agent
uses X k,m

t to run the RBOCPD (Algorithm 1). Each agent k
will receive a binary restart signal rk,mt afterwards, rk,mt = 1
when there is a change point and zero otherwise. The restart
signal rk,mt is calculated according to (5). According to the
cooperation mechanism described in Definition 2, each agent
observes its neighbors’ restart signals before deciding about
the restart.

Definition 2. Each agent has different observation set (size and
value) as its neighbors. To reduce the missed detections caused
by asynchronous detection, we design an effective cooperation
mechanism for the restart decision. It has a restart memory

time window that records the previous restart of the agents’
neighbors in a short time d. The cooperation restart detection
considers the majority voting of restart among neighbors in
that period,∑

j∈Nk

1{∃i ∈ [N j,m
t−d ,N

j,m
t ], rj,mi > 0} ≥ ⌈ηk

2
⌉

→ Restartkt = True. (8)

Hence the slower detector receives the restart information from
the faster ones to avoid missing change points.

Remark 2. The length of restart memory time window d
depends on the detection delay of RBOCPD, as described by
Theorem 2. Although each agent maintains a change point
detector with its own observations, all detectors follow the
same principle. Therefore, for every change point, the maximum
detection time difference is bounded. Thus, setting the restart
memory time window d based on the time delay is guaranteed
to include all possible correct detections and does not increase
the regret.

Algorithm 2 RBO-Coop-UCB ∀k ∈ K

1: Initialization ∀m ∈M, X k,m ← ϕ; Nk,m
0 ← 0; Sk,m

0 ←
0; τk ← 0.

2: for t = 1, 2, · · · , T do
3: if (t− τk) mod ⌊Mp ⌋ ∈ M then
4: Select arm Ikt ← (t− τk) mod ⌊Mp ⌋;
5: else
6: Select arm Ikt according to sampling rule (7).
7: end if
8: Play arm Ikt and receive the reward X

k,Ik
t

t .
9: Observe neighbors’ option and rewards.

10: Update µ̂k,m
t according to (6).

11: X k,m = X k,m ∪ {Xj,m
t }, if j ∈ Nk,1{Ijt = m} = 1.

12: rk,mt = RBOk(X k,m, ητk,s,Nk,m
t

) (from Algorithm 1).
13: if Restartkt from (8) then
14: τk ← t, ∀m ∈M, X k,m ← ϕ; Nk,m

t ← 0; Sk,m
t ←

0 (restart agent k’s UCB)
15: end if
16: end for

IV. PERFORMANCE ANALYSIS

In this section, we first overview the performance guarantees
for the Restarted Bayesian online change point detector [14].
Based on that, we analyze the regret bound.

Theorem 1 (False alarm rate). Assume that Xr:t ∼
B(µ). Let α > 1. If ηr,s,t is small enough such that
[14] ∀t ∈ [r, νn), s ∈ (r, t]:,ηr,s,t <

√
nr:s−1×ns:t

10(nr:t+1) ×
( log 2 log4(α)δ2

4nr:t log2(nr:t) log(αnr:s−1) log(nr:s−1) log(αns:t) log(ns:t)
)α, then

with probability higher than 1 − δ, no false alarm occurs
in the interval [r, νn):

Pθ{∃t ∈ [r, νn),Restartr:t = 1} ≤ δ. (9)
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Definition 3 (Relative gap ∆r,s,t). Let ∆ ∈ [0, 1]. The relative
gap ∆r,s,t for the forecaster s at time t takes the following
form (depending on the position of s) [14]:

∆r,s,t = (
nr:νn−1

nr:s−1
1{νn ≤ s ≤ t}+ nνn:t

ns:t
1{s < νn})∆

Theorem 2 (Detection delay). Let xr:νn−1 ∼ B(µ1),xνn:t ∼
B(µ2) and fr,s,t = log nr:s+log ns:t+1− 1

2 log nr:t+
9
8 . Also,

∆ = |µ1−µ2| is the change point gap. If ηr,s,t is large enough
such that [14]

ηr,s,t > exp
(
−2nr,s−1(∆r,s,t − Cr,s,t,δ)2 + fr,s,t

)
, (10)

Then the change point νn is detected (with a probability at
least 1− δ) with a delay not exceeding D∆,r,νn such that

D∆,r,νn
= min{d ∈ N∗ : d >

(1− Cr,νn,d+νn−1,δ

∆ )−2

2∆2

× − log ηr,νn,d+νn−1 + fr,νn,d+νn−1

1 +
log ηr,νn,d+νn−1−fr,νn,d+νn−1

2nr,νn−1(∆−Cr,νn,d+νn−1,δ)2

}, (11)

where

Cr,s,t,δ =

√
2

2
(

√
1 + 1

nr:s−1

nr:s−1
log

(
2
√
nr:s

δ

)
(12)

+

√
1 + 1

ns:t

ns:t
log

(
2nr:t

√
ns:t + 1 log2(nr:t)

log(2)δ

)
).

In the following we first propose an assumption and then
we present the regret analysis.

Assumption 2. Define dk,mn = ⌈Mp D∆,(νn−1+dk,m
n−1),νn

+ M
p ⌉,

where D∆,r,νn , Cr,νn,d+νn−1,δ , fr,νn,d+νn−1 and ∆ are calcu-
lated according to Theorem 2. Then we assume that for all n ∈
{1, . . . , N}, k ∈ K, m ∈M, νn−νn−1 ≥ 2max(dk,mn , dk,mn−1).

Assumption 2 is a standard assumption in non-stationary
bandit problems [9]. It guarantees that the length between two
change points is sufficiently long so that with high probability,
they are detectable with a reasonable delay. As the detection
delay D∆,r,νn

is asymptotically order optimal [14], dk,mn is
bounded by O(log T ).

Theorem 3. Running Algorithm 2 with assumption 1 and 2, the
expected cumulative regret of RBO-Coop-UCB with exploration
probability p and confidence level 1− δ satisfies

Rk
T ≤

N∑
i=1

C̃k
i +∆∗T (p+ 2MNσ +Mδ), (13)

where C̃k
i = ∆∗

i [M⌈
8 log T
(∆min

i )2
⌉+M(1+ π2

3 )], ∆∗
i and ∆min

i are
the highest and lowest reward difference in the i-th stationary
segment, δ is the false alarm rate in Theorem 2 in [14], σ < δ
is the maximum false alarm under cooperation.1

Proof Sketch. C̃k
i indicates the bandit algorithm regret, pT∆∗

refers to the regret caused by the exploration and the other parts
calculate the regret caused by the bad event including false

1We omit the proofs due to space considerations.

alarm and missed detection. To prove the regret, first consider
the stationary scenario with N = 1, ν0 = 0 and ν1 = T , then
the problem reduces to the multi-agent MAB and the regret
is Rk

T ≤ ∆∗
1[MσT + pT +M⌈ 8ξ log T

(∆min
1 )2
⌉+M(1+ π2

3 )]. Based
on Theorem 1 and 2, we can bound the regret caused by the
bad event. Then the regret in piecewise-stationary scenario can
be proven recursively.

Corollary 3.1. Choosing δ = 1
T , p =

√
M log T

T , the upper
bound of regret will be

RT ≤ O(KNM log T +K
√
MT log T ) (14)

V. EXPERIMENTS

Our proposed algorithm for Bernoulli distributions is easily
extendable to other distributions with bounded support by
using the sample x ∼ B(yt) after obtaining the scaled reward
yt ∈ [0, 1]. In this section, we evaluate our algorithm using a
real-world dataset for digital marketing shown in [17]. There
are 12 piecewise-stationary segments of the bounded reward
distribution and the underlying expected rewards of arms are
shown in Fig. 1b.

(a) Observation network
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(b) Average rewards of arms in the
Digital Marketing dataset.

Fig. 1: Setting of Experiment (Digital Marketing dataset).

We compare RBO-Coop-UCB with six benchmarks from
the literature and its variant. Specially, DUCB [6] and SW-
UCB [6] are passively adaptive algorithms while M-UCB
[17], GLR-UCB [9], [18] are actively adaptive algorithms. For
consistency, we implement each piecewise-stationary algorithm
with a cooperative version (information-sharing) and a non-
cooperative version (each agent runs independently in parallel).
We select UCB [19] and EXP3 [20] from the stochastic-
and adversarial bandit literature. RBO-Coop-UCB and GLR-
Coop-UCB share a similar structure, including information
sharing and cooperative change point detection. The only
difference between RBO-Coop-UCB and GLR-Coop-UCB is
the implemented change point detector. The hyperparameter
in our experiments are as follows. In DUCB, we have the
discount factor γ = 1 −

√
N/T/4; In SW-UCB, we select

the sliding window length τ = 2
√
T log T/N ; In M-UCB, we

have δ = maxi∈N,m∈M |µm
i − µm

i+1|, window size ω = 800,

b = [ω log
(
2MT 2

)
/2]1/2 and γ = 0.05

√
(N−1)(2b+3

√
ω)

2T ; For

algorithms with GLR and RBO, p =
√

log T
T , while in GLR

δ = 10
T and in RBO, ηr,s,t = 10

T .
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We further pre-process the dataset by setting a network with
K = 7 agents and the communication network is shown in
Fig. 1a. Fig. 2 shows the average regret of all algorithms and
Fig. 3 shows the change point detection signals based on ten
independent experiments.

According to Fig. 2, RBO-Coop-UCB has the lowest regret
among all algorithms, which shows the effectiveness of our
proposal. Compared with the algorithms with cooperation
among agents (solid lines), most other methods (dashed lines)
suffer higher regrets. That proves that an information-sharing
framework can improve performance. Finally, most algorithms
that track the time variations have a regret lower than UCB
and EXP3. In general, it is excessively ideal to assume the
stochastic bandit model and apply a UCB-based algorithm and
too conservative to assume the adversarial bandit model and use
an EXP3-type method [11]; consequently, most of piecewise-
stationary bandit algorithms improve the performance by taking
the piecewise-stationary environment into account.

The performance of RBOCPD and GLRCPD in change
point detection of ten independent experiments is compared
in Fig. 3. The change point detection performance of RBO-
Coop is better than GLR-Coop due to its sensitive detection
and short detection delay. Besides, it is observable that RBO-
UCB has more false alarms while our proposed cooperation
mechanism reduces false alarms significantly and maintains
comparable performance in detecting real change points. Thus
RBO-Coop detects more change points than GLR-Coop does,
and guarantees fewer false alarms, leading to a lower regret.
Therefore, our proposed algorithm, RBO-Coop-UCB has the
best performance compared to the state-of-the-art algorithms.

0 5000 10000 15000 20000 25000
t (Trials)

0

10000

20000

30000

40000

50000

60000

Ex
pe

ct
ed

 C
um

ul
at

iv
e 

Re
gr

et

RBO-Coop-UCB
RBO-UCB
GLR-Coop-UCB
GLR-UCB
M-Coop-UCB
M-UCB
D-Coop-UCB
D-UCB
SW-Coop-UCB
SW-UCB
UCB
EXP3

Fig. 2: Expected cumulative regret for different benchmarks.

0 2100 4200 6300 8400 10500 12600 14700 16800 18900 21000 23100
t

0

10

20

30

40

50

60

70

Nu
m

be
r o

f D
et

ec
te

d 
CP

D

RBO-Coop
GLR-Coop

(a) RBO-Coop and GLR-Coop
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Fig. 3: Change Point detection in different algorithms.

VI. CONCLUSION

In this paper, we propose an algorithm (RBO-Coop-UCB)
which can solve the MAMAB problem in a piecewise-stationary

environment. RBO-Coop-UCB considers a cooperative UCB
framework with information sharing among agents with change
point detector based on Bayesian strategy. We prove that the
group regret of RBO-Coop-UCB algorithm is upper bounded by
O(KNM log T +K

√
MT log T ). Numerical analysis shows

our proposed algorithm outperforms other state-of-the-art
algorithms.
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