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Abstract—Intraday volatility is a crucial indicator for short-
term price movements of financial assets, playing a pivotal role in
risk management and other financial applications in the era of
high-frequency algorithmic trading. However, existing methods
fail to capture complex intraday volatility patterns, leading to
inadequate forecast capabilities. To address these shortcomings,
we propose a novel multiplicative component framework that
leverages the close relationship between volatility and trading
volume to analyze intraday volatility. We further introduce a
state-space approach to implement this framework for modeling
and forecasting. Empirical experiments demonstrate that our
proposed method outperforms traditional models by providing
more comprehensive insights and achieving higher forecasting
accuracy for intraday volatility.

Index Terms—Intraday volatility modeling and forecasting,
volatility-volume relation, state-space model

I. INTRODUCTION

In the last half-century, stock market volatility has been
extensively discussed. Volatility, usually measured by the
standard deviation of stock returns, is a crucial factor as
it characterizes the level of risk associated with an asset.
With the emergence of algorithmic trading, financial assets
are now subject to substantial price fluctuations within min-
utes. Therefore, intraday volatility has become increasingly
important to academia and the financial industry. Accurate
intraday volatility modeling and forecasting assist traders in
assessing their risk exposure and identifying profitable trading
opportunities [1]. They are also fundamental in pricing options
and other derivatives [2], [3].

In the literature, daily volatility modeling has been well
researched, with three classes of models receiving significant
attention: historical volatility [4], ARCH-GARCH class con-
ditional volatility (e.g. [S], [6]), and stochastic volatility (e.g.
[7]). However, intraday volatility modeling and forecasting
pose greater challenges. Although ARCH class models can
be applied directly to intraday volatility [8], [9], they have
been criticized for their inability to capture complex structures,
such as intraday regularities. To address this limitation, [10]
proposes filtering out the intraday seasonal pattern before
applying GARCH models. Alternatively, [11] suggests rep-
resenting intraday volatility as a product of daily, intraday
seasonal, and intraday dynamics components and developing
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a multiplicative component GARCH (mcsGARCH). However,
mcsGARCH is impractical in practice due to the potential
error accumulation in multistep estimation. Therefore, intraday
volatility modeling and forecasting remain under-explored
research areas.

In recent years, scholars have been exploring the role of
trading volume in advancing the understanding of intraday
volatility. The positive relationship between volatility and vol-
ume is widely acknowledged, with two established theoretical
explanations. The sequential information arrival hypothesis
(SIAH) assumes that traders react to new information se-
quentially, thus, lagged values of volatility and volume can
predict current ones [12], [13]. The other explanation for the
positive correlation is the mixture of distributions hypothesis
(MDH), which posits that stock price and volume are jointly
dependent on common information flow [14], [15]. While
incorporating trading volume information may be beneficial,
how to effectively model and exploit the intraday volatility-
volume relationship remains an open question.

Our study contributes to the existing literature in the fol-
lowing ways:

o We propose a new multiplicative component framework
for intraday volatility that accounts for the volatility-
volume relationship.

+ We develop a state-space approach for intraday volatility
modeling and forecasting.

« We conduct extensive empirical experiments that demon-
strate our proposed model’s superior financial interpreta-
tion and forecasting performance.

II. PRELIMINARIES AND MOTIVATION

A. Intraday Volatility

In this study, we use 15-minute intervals to model intraday
volatility, where each trading day is indexed by ¢t € {1,2,...}
and each bin within a day is indexed by n € {1,...,N}. We
denote the asset price at the end of bin n of day ¢t by P ,, and
compute the return in every 15 minutes as

log (Pyn/Pip—1) n>1 0
t,n —
IOg (Pt,l/Ptfl,N) n = 0.
The R package intradayModel will support the proposed algorithm.
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To measure intraday volatility, we use the sum of higher-
frequency squared returns (realized volatility), expressed as

2

where A € (0,1] is a possibly shorter horizon standardized
by 15 minutes, for example, A = 1/3 stands for 5-minute
intervals. 7; ,,_14;A is the higher-frequency return satisfying
(1) and 7 p, = Z]li? Pt.n—1+jA. As shown in the top panel of
Figure 1, the time series of intraday volatility exhibits volatility
clustering and persistence across different time scales, which
are crucial for accurate forecasting.
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Fig. 1. Intraday volatility and volume series of AMZN stock in log scale.

B. Multiplicative Component GARCH

Engle and Sokalska propose the mcsGARCH model for
intraday financial returns [11], which has the expression

and &, ~N(0,1), 3)

Tt,n = Ot,n€t,n;,

where the conditional variance is decomposed into three
components:
2
Oy

7n_

daily, x seasonal,, X intraday dynamics, ,,.  (4)

The daily component is the systematic volatility variation
across different trading days and adjusts the average level
of intraday volatility. It can be obtained from the volatility
forecasts such as the multifactor risk model or daily GARCH.
The seasonal component is the average volatility within the
same bin across different days. It exhibits a U-shaped pattern
due to the higher trading activity at the opening and closing
hours. The intraday dynamics component captures the intraday
variation of volatility, such as due to unexpected news or
sudden changes in market sentiment.

While the mcsGARCH has reasonable financial interpreta-
tions, it also has several practical limitations that deteriorate its
forecasting ability: 1) Errors in the one-day-ahead prediction
of the daily component can propagate and cause errors in the
intraday GARCH model [16]. 2) Intraday GARCH cannot
capture the longer-lasting effects of market shocks [4]. To
address these issues, incorporating new sources of information,
such as trading volume, is necessary.

C. Mixture of Distribution Hypothesis

The positive relationship between daily volatility and trad-
ing volume has been extensively investigated in New York

Stock Exchange common stocks [17] and nine national mar-
kets [18]. Similarly, the positive correlation can be observed
in intraday data [19], [20], which can be identified in Figure
1. The widely researched MDH hypothesis builds a bivariate
normal mixture model of daily price change AP and trading
volume V, expressed as

AP = alﬁZl
V = pol + 0oV1Zy,

where Z; and Z are N(0, 1) random variables. This model
directly and positively links volatility and volume with the
information flow .

The MDH hypothesis, while appealing from an information
flow standpoint, oversimplifies the intraday relationship as one
latent variable I and suffers two significant limitations: 1)
It fails to fully capture the volatility and volume intraday
dynamics, including unexpected movements [20]. 2) It can-
not account for the long-term variations in daily volatility
and volume [21]. Information flow is associated only with
medium-term volatility persistence, highlighting the need for
a more sophisticated modeling approach to incorporate volume
information in intraday volatility modeling.

&)

III. PROPOSED STATE-SPACE APPROACH
A. New Multiplicative Component Framework

We propose a novel framework for intraday volatility mod-
eling that decomposes it into multiple components: seasonal,
daily (long-term), information flow (medium-term), unex-
pected volatility (short-term), and noise components. Infor-
mation flow and unexpected volatility correspond to "good"
and "bad" intraday volatilities, respectively. "Good" volatility
is directional, persistent, relatively easy to anticipate, and
accompanied by sufficiently high volume. "Bad" volatility is
erratic, relatively difficult to predict, and less associated with
volume [20]. Intraday volume is decomposed similarly but
without the unexpected volatility component.

Therefore, our framework is expressed as

Ot =dp X 8y X Ity X Uy X €4y

(6)

Vi =di X 85 X It % Si,m
where

o d; (d}) is the daily volatility (volume) component;

e Sy, (s}) is the intraday seasonal volatility (volume) com-

ponent;

e I, is the shared information flow;

e U, is the unexpected volatility component;

e Eim (e’{n) is the log-normal noise term in volatility

(volume).
Specifically, the intraday seasonal components are estimated
separately based on historical averages.

Our proposed model for intraday volatility modeling of-
fers several improvements over the traditional mcsGARCH
model. First, incorporating information flow can better extract
medium-term volatility persistence with the knowledge of
trading volume. Second, we gain greater flexibility in capturing
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intraday dynamics by modeling it as a stochastic process
instead of a deterministic function. Third, our state-space
approach, introduced in Section III-B, enables us to extract
all components simultaneously.

Compared to the MDH hypothesis, our framework provides
a more precise identification of the information flow by filter-
ing out components that cannot be well captured, such as daily
patterns with long-term differences and unexpected volatility.
These improvements enable us to identify volatility persistence
with different frequencies, leading to richer interpretations of
market microstructure.

B. State-space Approach

To facilitate component extraction in the model (6), we
propose a state-space formulation that employs the Kalman
filter and smoother. Notably, a key issue with intraday data is
its heavy-tailed distribution. As demonstrated by the quantile-
quantile plot (Q-Q plot) in Figure 2a, intraday volatility
deviates significantly from the straight line, indicating a non-
Gaussian distribution. This finding is consistent with previous
studies of intraday volume [22]. To address this issue, we
apply logarithmic transformations to obtain a more Gaussian-
like distribution, as shown in Figure 2b [23], [24].
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(a) Q-Q plot of volatility. (b) Q-Q plot of log-volatility.

Fig. 2. Q-Q plot of intraday volatility and log-volatility of AAPL stock.

Therefore, we reformulate the model (6) as
Inoy, =Ind; +Ins; +1Inly; +1Inw; +1ney;

7
InVi, =Ind; +Ins; +Inl;; +Ine;,. M

We make several assumptions to specify the evolution of each
latent variable in the model (7). Firstly, the daily compo-
nents change only during the close of markets and remain
constant during trading hours, while the seasonal components
are assumed to be unchanged throughout. Additionally, the
information flow and unexpected volatility components are
modeled as autoregressive processes with order 1 (AR(1)), as
both the informed trades and uninformed trades are highly
history dependent (e.g., [25]).

To accommodate these assumptions, we propose a state-
space model inspired by prior work [22]. For ease of notation,
we index the subscript (¢t,n) as 7 = N x (¢t — 1) + n,7 =
1,2,...,7T. Subsequently, we can formulate the state-space
model as follows,

Y- :WXT+ST +E"’f'v

(®)
Xr41 = FTXT + n-

where
e ¥ =[Ino,,InV,]T is the observation vector of intraday
log-volatility and log-volume;

e X, = [Ind,,Ind*,InI;,Inu,]" is the state vector con-
taining daily, information flow, and unexpected volatility
components;

e W is the observation matrix:

10 1 1
W = ;
01 10
e s; = [Ins,,Ins¥|T is the vector of intraday seasonal

components corresponding to specific bins;
o F_ is the transition matrix

T=kN

otherwise;

F - {diag (aq,al, ar, ay)
diag (1,1, ar,ay)
e £ ~ N (0,R) is the i.i.d. Gaussian noise with
R = diag (ri, T?,) ;
e 1.~ N(0,Q;) is the i.i.d. Gaussian noise with

9 :{diag(qﬁ,(qZ)Q,Q%vqﬁ) T=kN

diag (0, 0,¢?, qg) otherwise.

The parameters in model (8) include

* *
0= (a’d7ad) A1, QusToyTvy4d, 44,91, qu) )

and they are estimated using the expectation—maximization
(EM) algorithm [26].

1) Modeling Procedure: Once the parameters are estimated
and fixed, we can extract the hidden components from the
observed intraday volatility signal. The Kalman smoother is
utilized to estimate the optimal decomposition, the latent
variable x|, which is the optimal estimate of the state
conditioned on all data from r=1to7="T.

2) Forecasting Procedure: In addition to component extrac-
tion, the proposed state-space model also allows for intraday
volatility forecasting. This study focuses on one-bin-ahead
forecasting, where the volatility at a specific bin is predicted
based on all the information up to the last bin. Specifically,
we use the Kalman filter to generate the one-bin-ahead state
prediction, denoted as Xril|rs and then obtain the volatility
prediction by adding up the components:

Ino, 1 =Indr 4y +Insrypr +In g +Inurgq),. 9)
IV. EXPERIMENT

A. Experiment Set-Up

This empirical study examines the intraday price and vol-
ume data of S&P 500 stocks from January 2019 to June 2021.
The stocks are divided into five batches based on alphabetical
order. Each trading day is divided into N 15-minute bins,
and the actual volatility is calculated using 5-minute price
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data, as shown in Equation (2). To evaluate the modeling
and forecasting performance, we split each stock’s data into a
training set to estimate the model parameters and an out-of-
sample testing set. Table II provides further details about the
dataset.

B. Modeling Results

The volatility components of the sample data are presented
in Figure 3. The daily component captures the average level
of daily volatility and demonstrates long-term persistence,
contributing to the volatility clustering across trading days.
The information flow captures most intraday patterns, while
the unexpected volatility component is less informative with
a small magnitude.
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Fig. 3. Decomposition of intraday volatility of ABT stock in log scale.

Table I summarizes the estimated parameters from S&P 500,
indicating a long-term daily volatility persistence with a large
parameter aq4. The information flow has a smaller parameter
ag, supporting the presence of autocorrelation in information
flow and medium-term volatility persistence. The unexpected
volatility component has the smallest parameter a,,. However,
it indicates the existence of some intraday patterns that cannot
be explained by the joint volatility-volume movement, aligning
with the critics in [20].

TABLE 1
ESTIMATED PARAMETERS OF VOLATILITY COMPONENTS IN S&P 500.
Parameter \ Mean \ Standard error | t-ratio
aq 0.833 0.00503 165.462
ar 0.686 0.00375 182.791
Ay 0.449 0.01708 26.299

To further confirm the features of each component, we
perform spectral analysis through Fourier Transform. As il-
lustrated in Figure 4, the daily component dominates the
low-frequency spectrum, while the information flow has a
higher frequency, responsible for long-term and medium-term

volatility persistence, respectively. Conversely, the unexpected
volatility component has a flatter spectrum, indicating its
higher randomness and tendency to capture unexpected volatil-
ity changes.
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Fig. 4. Frequency spectrum of volatility components of ABT stock after
smoothing.

C. Forecasting Results

1) Competing Methods: This study presents three groups of
candidate methods for intraday volatility modeling discussed
in the literature [4], [27]. The first group includes traditional
time-series models such as random walk, moving average
(MA), and exponential weighted moving average (EWMA).
The second group removes seasonal effects first and im-
plements classical volatility models, including ARCH and
GARCH models [10]. Finally, the third group is the specific-
designed models for intraday volatility, i.e., the multiplicative
component GARCH (mcsGARCH) [11].

2) Evaluation Measures: We evaluate the one-bin-ahead
forecasting performance in the out-of-sample testing set, which
consists of M bins. Mean absolute percent error (MAPE) and
Theil-U statistic are used as indicators of the forecast accuracy
[4]. They are defined as

|6i — o ZM (6i — 0'2)2

MAPE = Z , Theil-U = —=i=1 3
- 7 i=1 (0ic1 — 03)

(10)

Specifically, the Theil-U statistic is the prediction error stan-
dardized by random walk error.

The results are summarized in Table II. Our proposed
method demonstrated the highest level of accuracy when
compared to the other competing methods, as indicated by
both measures. While the ARCH and GARCH models have
lower accuracy than traditional time-series models concern-
ing MAPE, they outperform the latter concerning Theil-U.
This can be attributed to the ARCH-GARCH class models’
sensitivity to unexpected movements, compared to traditional
methods based on historical smoothing that typically have a
lag in response. The mcsGARCH performs worst likely due to
its multistep estimation strategy. Overall, our proposed method
demonstrates its efficacy for accurate intraday volatility fore-
casting.

1398



TABLE 11
FORECASTING PERFORMANCE IN S&P 500.

Stocks A - CMCSA CME - GILD GIS - META MGM - ROP ROST - ZTS
Training Period | Jan - May, 2019 Jul - Nov, 2019 Jan - May, 2020 Jul - Nov, 2020 Jan - May, 2021
Forecast Period Jun, 2019 Dec, 2019 Jun, 2020 Dec, 2020 Jun, 2021

Measure MAPE | Theil-U | MAPE | Theil-U | MAPE | Theil-U | MAPE | Theil-U | MAPE | Theil-U
Proposed 0.547 0.476 0.591 0.482 0.512 0.535 0.550 0.470 0.568 0.474
Random walk 0.752 1.000 0.839 1.000 0.703 1.000 0.745 1.000 0.768 1.000
MA(5) 0.722 0.796 0.860 0.802 0.644 0.760 0.704 0.794 0.724 0.800
EWMA(5S) 0.729 0.734 0.884 0.740 0.654 0.712 0.713 0.738 0.734 0.740
ARCH(5) 0.821 0.578 1.067 0.702 0.786 0.844 0.915 0.695 1.162 0.874
GARCH(3,2) 0.788 0.543 0.968 0.616 0.731 0.670 0.833 0.605 0.950 0.649
mcsGARCH 0.926 2.002 0.922 1.871 0.889 2.200 0.910 2.035 0.922 1.939

V. CONCLUSION [12] T. E. Copeland, “A model of asset trading under the assumption of

In this paper, we introduced a novel multiplicative frame-
work for intraday volatility modeling that decomposes volatil-
ity into long-, medium-, and short-term components. Our
proposed state-space approach enables the extraction of hid-
den components and has demonstrated improved forecast
accuracy compared to existing methods, as shown through
empirical experiments on S&P 500 stocks. Furthermore, this
work offers valuable tools and insights for future research in
microeconomics, such as identifying which latent demands
are translated into intraday prices and volumes, as well as
in macroeconomics, particularly in studying the relationship
between systematic risk and global information flow.
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