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Abstract—One of the most important problems in science is
understanding causation. This is particularly challenging when
one has access to observational data only and is further com-
pounded in the presence of latent confounders. In this paper,
we propose a method for detecting confounders in multivariate
time series using a recently introduced concept referred to as
differential causal effect (DCE). The solution is based on feature-
based Gaussian processes that are used for estimating both, the
DCE of the observed time series and the latent confounders.
We demonstrate the performance of the proposed method with
several examples. They show that the proposed approach can
detect confounders and can accurately estimate causal strengths.

I. INTRODUCTION

In many science and engineering problems, it is of fun-
damental importance to infer causal relationships from data
— fields as diverse as medicine [7], economics [1], social
sciences [10], and machine learning [22] have an interest in
causal inference. While some notions of causality are indeed
statistical, such as Granger causality [5], much of modern
causal inference relies on interventional and counterfactual no-
tions [21]. These notions carry strictly more information than
observational data can provide, and they require randomized
experiments. However, these experiments are often too time-
consuming, expensive, or unfeasible to conduct, necessitating
the use of observational or quasi-experimental data.

Unfortunately, inferring causal relationships from observa-
tional data is generally ill-posed, meaning further assump-
tions are necessary [22, pp. 135]. One particularly common
assumption, which often fails to hold in practice, is causal
sufficiency; this assumption states that any variable which
directly affects at least two other variables is observed [25,
pp. 22]. When there are confounders, unobserved variables
which affect multiple observed variables, causal sufficiency is
violated and incorrect causal conclusions are often made. To
add further challenges, causal sufficiency is difficult to test for,
and it generally requires domain knowledge to establish [25,
p.123].

A wide variety of methods have been developed to address
the possibility of confounders, either through their detection or
by learning causal models which indicate possible confound-
edness. While this current work aims at addressing the former
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problem, we note that much work has been conducted on the
latter one. These include constraint-based methods such as fast
causal inference [25, pg. 144], score-based methods [4], hybrid
methods [20], or asymmetry-based methods [8] — see [26] for
a recent survey of such methods. A number of these methods
have been adapted or extended to the special case of time
series such as ANLTSM [3] and VAR-LiNGAM [9].

The problem of detecting confounders is comparatively
much less explored. One line of work into confounder de-
tection involves deriving estimators of the “structural strength
of confounding” γ, where γ = 0 corresponds to the un-
confounded case and γ = 1 corresponds to the entirely
confounded case. For linear Gaussian-additive noise models
(LinGAMs) with a scalar confounder, the authors in [13]
develop an estimate of γ using spectral techniques in high
dimensions. Detection using the first moment of such a spec-
tral measure showed superior performance in [17]. The case
of LinGAMs with multivariate confounders was addressed in
[14] using techniques from independent component analysis; a
correction term to make the estimator consistent is provided in
[24]. Another approach to the detection of confounders lies on
the postulate of the algorithmic Markov condition, introduced
in [12]. Under this interpretation of causality, the true causal
factorization is the one which minimizes the Kolmogorov
complexity of the factorized joint distribution. In [15], the
minimum description length (MDL) is used as an approxi-
mation of Kolmogorov complexity, comparing the MDL of
an unconfounded model to the MDL of a latent variable
model (LVM) to detect confoundedness. To our knowledge, no
confounder detection methods have been developed explicitly
for time series.

Finally, if one is interested in a specific causal effect,
some methods have employed LVMs to estimate the av-
erage causal/treatment effect, with the idea that proxies of
confounders can be estimated from observed variables. For
example, [19] uses variational autoencoders to estimate the av-
erage effect of a binary treatment. Meanwhile, using a slightly
different set of assumptions more common to the potential
outcomes framework of causality, [27] creates a framework
for using factor models in estimating average causal effects.

In this paper, we propose a novel method for confounder
detection in time series with additive Gaussian noise. To
achieve this, we extend an existing notion of causal strength
[2] to time series, and estimate the strength of any potential
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confounders using random feature-based Gaussian processes
(GPs). We organize the rest of the paper as follows: in
Section II, we give background for causal models, GPs, and
causal effect estimation. In Sections III and IV, we outline
our proposed model and solution. Results for a variety of
numerical experiments on simulated data are presented in
Section V, and concluding remarks are made in Section VI.

II. BACKGROUND

A. Structure Causal Models and Latent Confounders

Consider random variables y1, . . . , yN , with an underlying
cause and effect relationship. We can represent the relationship
between variables by a set of functions, called a structural
causal model (SCM). Mathematically, assuming an additive
noise process, we have,

yi = fi(Pa(yi)) + ϵi, i = 1, 2, · · · , N, (1)

where Pa(yi) is the parent set (the set of immediate causes) of
yi and ϵi is independent noise or error of the model. We use
the notion of parent set because we can represent the causal
structure with a directed acyclic graph (DAG) whose nodes
are variables and whose edges point from parent to children
variables. By evaluating the functions f , we can get causal
structures and represent them via DAGs, with cause-effect
relationship being symbolized by edges pointing from cause
to effect nodes.

If a latent confounder z exists and causes a difference in
the causal structure, then with the confounder z, the observed
data yi are not only a function of its parent set Pa(yi) of
variables but also a function of the confounder, that is, we
have yi = fi(Pa(yi), z) + ϵi.

B. Causal Strength

There are several possible ways to quantify the strength of
a causal interaction [11], but in this work we will take an
approach based on differential calculus. Since the derivative
of a function can measure the sensitivity of the function’s
output to changes in the input, a natural measure of causal
strength is to consider differentiation of functions in SCMs.
Let yt be an N dimensional multivariate time series. For
simplicity, we focus on one of the observed time series, which
we will simply represent by yt and will denote its observed
and unobserved parents by xt− and zt−, respectively. We note
that all the parents take their values before yt takes its own
value, i.e., there are no simultaneous effects. In summary,
Pa(yt) = {yt−, xt−, zt−}, where the vector yt− contains all
the parents of yt that represent some of the past values of
yt, and xt− and zt− are parents that are past values of other
observed and unobserved time series, respectively. If for yt we
write yt = f(yt−, xt−, zt−), we define the differential causal
effect (DCE) of a single parent, e.g., of xt−l,i on yt to be the
partial derivative of the function with respect to xt−l,i [2],

DCExt−l,i→yt

∆
=

∂f

∂xt−l,i
, (2)

where xt−l,i corresponds to the ith time series of the remaining
N−1 time series and l is the lag of that time series, with i and
l fully defining the parent. We refer to this notion of causal
strength as the direct DCE, since it assumes that xt−l,i directly
causes changes to yt. More generally, xt−l,i might not effect
yt directly, but through a chain of causal mechanisms it exerts
an influence on yt. In this case, it is more appropriate to use
the chain rule to decompose the total effect as the product
of the effects along the chain. The total DCE xt−l,i on yt is
defined to be the causal effect yielded by the composition of
multiple mechanisms, i.e.

(Total) DCExt−l,i→yt
=

∂f

∂ Pa(yt)

∂ Pa(yt)

∂xt−l,i
. (3)

To compute the total DCE for any given interaction, we
repeatedly apply (3) to derive the correct expression.

When a latent process zt exerts an influence on another
process yt, the DCE ∂yt/∂zt−l,i will be nonzero for some lag
l. Otherwise, the function f is effectively constant with respect
to changes in zt−l,i, and we cannot say that yt depends on
zt−l,i meaningfully. Since a reconstruction of a latent process
is not unique, the magnitude of the causal strength of zt−i

on yt is not generally meaningful. However, zeroness of the
causal strength does not depend on the choice of coordinates.
If z̃t−i and zt−i are two equivalent latent states, and the causal
strength of z̃t−i on yt is zero, then the chain rule states that

∂yt
∂zt−i

=
∂yt
∂z̃t−i

∂z̃t−i

∂zt−i
= 0× ∂z̃t−i

∂zt−1
= 0.

In principle, we can use the causal strength to decide that zt−i

does not effect yt. In the multivariate setting, we assert that
zt−i does not effect yt when all partial derivatives of yt with
respect to the elements of zt−i are zero.

C. Gaussian processes

Gaussian processes (GPs) are a class of stochastic processes
often used in machine learning for modeling functions [23].
More specifically, let (xt, yt), t = 1, 2, . . . , T , be T input-
output values, where y = [y1 y2 . . . yT ]

⊤, and y = f(X), with
f(·) ∈ RT×1 and X ∈ RT×dx being a matrix whose rows rep-
resent the inputs to the function f , that is, X = [x1, . . . ,xT ]

⊤,
y = f(X) = [f(x⊤

1 ), . . . , f(x
⊤
T )]

⊤. A defining characteristic
of GPs is that their observation vectors are jointly Gaussian.
Mathematically, we have f ∼ GP (m(X),Kθ(X)), where
m(X) is the mean function, Kθ(X) is the covariance (kernel)
function of the process, and θ is a vector of hyperparameters
of the GP.

1) Random feature-based GPs: One main drawback of GPs
is that they scale poorly with the number of input-output pairs,
T . Fortunately, we can ameliorate this by using one of several
sparse approximations. One approach is based on constructing
GPs based on their spectra in a feature space [16]. A GP with
a shift-invariant kernel can be approximated using a feature
space where matrix decompositions will not be required. The
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vector of basis functions of the feature space is comprised of
trigonometric functions that are defined by

ϕv(x) =
1√
J
[sin x⊤v1 cos x⊤v1 · · · sin x⊤vJ cos x⊤vJ ]⊤,

where vi are vectors of samples drawn randomly from the
power spectral density of the kernel of the GP, and V =
[v1, . . . , vJ ]. Then the kernel function k(x, x′) can be approxi-
mated by ϕ⊤

v (x)ϕv(x′) if the kernel is shift-invariant. The GP
approximation is then

f(x) ≈ ϕ⊤
v (x)θ = [cos(x⊤V), sin(x⊤V)]θ/

√
J, (4)

where θ ∈ R2J×1 is a vector of parameters of the approx-
imating model. The derivatives of the random feature-based
function with respect to x is

∂f(x)
∂x

= θ⊤[diag
(
− sinV⊤x

)
,diag

(
cosV⊤x

)
]V⊤/

√
J.

(5)

III. PROBLEM FORMULATION

Let xt ∈ RN×1 represent a vector of signals collected from
a directed graph G from all its nodes at time t, where xt,i

denotes the graph signal of node i at time t. The directed
graph G’s structure represents the causal relationships between
the variables (nodes) in the graph. Further, we assume that the
signal xt,i is generated as a function of its G-parents. Since
we investigate the causal effects from all nodes to a single
target variable, we represent the target variable xt,i at time t
as yt and keep its other parents Pa(xt,\i) as x for clarification
purposes. If there is an underlying not observed process, i.e.,
a confounding process, we represent it by zt. Specifically,
consider the data model:

zt = f(zt−lzz :t−1,xt−lzx:t−1, yt−lzy :t−1) + ut, (6)
xt = h(zt−lxz :t−1,xt−lxx:t−1, yt−lxy :t−1) + vt, (7)
yt = g(zt−lyz :t−1,xt−lyx:t−1, yt−lyy:t−1) + et, (8)

where lzz , lzx, etc. are the maximum lags of past samples
effecting values of the caused variables, and ut, vt, and et
are errors modeled as zero-mean Gaussians, and wi:j for w =
x, y, z denotes wi, wi+1, . . . , wj . For example, zt−lzz :t−1 =
zt−lzz , zt−lzz+1, . . . , zt−2, zt−1.

In our model, the functions f(·, · · · , ·), h(·, · · · , ·), and
g(·, · · · , ·) are unknown and given a GP prior. The objective
is to determine the causal strengths of given nodes to a node
of interest, using (2).

IV. PROPOSED SOLUTION

We investigate the nodes one by one, and without loss
of generality, we focus on the scalar target node yt in the
remaining part of the paper. We write (6) and (8) using the
form of random features as

zt = H⊤ϕϕϕv(zt−lzz :t−1,xt−lzx:t−1, yt−lzy :t−1) + ut, (9)

yt = θ⊤ϕϕϕv(zt−lyz :t−1,xt−lyx:t−1, yt−lyy:t−1) + et, (10)

where ϕϕϕv represents random vectors with V = {Vx,Vy},
H = [ηηη[1], ηηη[2], . . . , ηηη[dx]], and θ are parameter variables. We

assume that the parameter variables are all independent, i.e.,
the columns of H are independent of the other columns. The
independence assumption about the parameter variables im-
plies that the dimensions of zt are conditionally independent.
To do the sequential inference on the distribution of H, θ, and
zt, we assign prior distributions p(H), p(θ), and p(z0) to them
and adopt the Bayesian paradigm [18].

The method for finding causal strengths of the possible
confounders is based on Bayesian regression for H and θ and
on particle filtering for ẑt. The Bayesian regression relied on
the estimated values of the confounder ẑt, and the particle filter
for tracking zt, in turn, used the estimated matrices Ĥ and θ̂.
The Bayesian regression that estimates θ produces the mean
of the estimate, θ̄, and its covariance matrix, Σ, which are
then used to determine the mean and variance of the desired
partial derivative of yt in terms of (5). The detailed procedures
and related codes can be found in [18].

V. NUMERICAL RESULTS

In our numerical experiments, we considered two different
cases. The first case has constant causal strength, while the
second one has time-varying causal strength of the confounder.
To validate that our model can detect the absence of a
confounder, our second synthetic case contains a confounder
with no direct DCE on the target variable. Both cases have
only one time unit lag for the sake of simplicity.

A. Synthetic Case 1

zt−1 zt

xt−1 xt

yt−1 yt

Fig. 1. Diagram for Case 1. The variable zt−1 is a hidden confounder while
xt and yt are observed.

The latent state zt contributes to both xt and yt, while xt

and yt are not connected. We generated 8,000 samples by

zt =
1

1 + exp {15 sin(t/20)}
, (11)

xt = −0.8zt−1 + 0.5xt−1 + et, (12)
yt = 0.5zt−1 − 0.8yt−1 + vt, (13)

where et ∼ N(0, 12), and vt ∼ N(0, 0.12). The first
T0 =1,000 samples are pre-trained, and the remaining 7,000
samples are used for real-time learning. Figure 2 presents
the DCEs of yt to the previous observations and confounder,
which are

∂yt
∂yt−1

,
∂yt

∂xt−1
, and

∂yt
∂zt−1

.
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Estimated DCE of ∂yt/∂zt−1

Actual DCE of ∂yt/∂xt−1 
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Fig. 2. Case 1: The actual and estimated DCEs of the parent nodes
yt−1, xt−1, and zt−1 to yt.
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E
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Estimated DCE of ∂yt/∂xt−1

Estimated DCE to ∂yt/∂z[2]t−2

Estimated DCE to ∂yt/∂z[1]t−2

Actual DCE of ∂yt/∂xt−1

Actual DCE of ∂yt/∂z[2]t−2

Fig. 3. Case 2: The actual and estimated DCEs of the parent nodes
zt−1 and xt−1 to yt.

To make the lines smoother and more stable when plotting
the figures, we use moving averages of the estimated DCEs,
i.e., the means of estimated DCEs among the rolling window
with a fixed width. In this paper, we set the width as 150
time units. From Fig. 2, the estimated derivatives ∂yt/∂yt−1

and ∂yt/∂xt−1 are both around the actual derivatives. Note
that the xt and yt have no connection. Our results show that
the estimated DCE ∂yt/∂xt−1 is around zero, which implies
that there is no causation from the observed processes xt

to yt. The estimated latent states are not unique due to the
unknown f and g, but are identifiable up to scales, rotation,
and mirroring on account of the properties of random feature-
based GPs [6]. Consequently, we might not detect the real
value of casual strengths. However, from the cyan lines in Fig.
2, the estimated DCEs of yt to the confounder zt−1 are around
-0.5 while the actual DCE ∂yt/∂zt−1 is 0.5. Although we
cannot determine whether the causation is positive or negative,
the results suggest that we are not far from the absolute value
of the DCEs. Most importantly, we can claim that we can
detect the confounder.

B. Synthetic Case 2

zt−2 zt−1 zt

xt−2 xt−1 xt

yt−2 yt−1 yt

t≤2500

Fig. 4. Diagram for case 2. zt is a two-dimensional hidden process, while
xt and yt are observed.

In this experiment, we studied a case where one of the
causal strengths is time-varying. The latent states zt effects

xt, and both zt and xt effect yt, where xt and yt are known
while zt is unknown. We generated 10,000 samples by

z
[1]
t = 0.9z

[1]
t−1 + 0.5 sin(z

[1]
t−1) + u

[1]
t , (14)

z
[2]
t = 0.5 sin(z

[1]
t−1) + 0.9z

[2]
t−1 + u

[2]
t , (15)

xt = 1.2z
[1]
t−1 − 0.8z

[2]
t−1 + 0.8xt−1 + et, (16)

yt =

{
0.4z

[1]
t−2 + 0.6xt−1 + vt when t ≤ 2500,

0.6xt−1 + vt when t > 2500,
(17)

where u
[1]
t , u

[2]
t ∼ N(0, 0.12), and et, vt are both distributed

according to N(0, 0.0012). The first T0 =1,000 samples were
used for pre-training, and the remaining 9,000 samples were
used for estimation. Figure 3 shows the DCEs of yt to xt−1

and zt−2. From the figure, the estimated DCEs of ∂yt/∂xt−1

and ∂yt/∂z
[2]
t−2 are around the actual values of the DCEs and

are equal to 0.6 and 0, respectively. It is noteworthy that z[2]t−2

is the second dimension of the latent confounder with no effect
on either xt−1 or yt.

Our results show that only one of the latent dimensions
affects the observations. The results suggest that our proposed
model can identify the dimensions of the latent confounder.
Moreover, Fig. 3 provides evidence that our method can also
estimate time-varying causal strengths. The actual DCE of
∂yt/∂z

[1]
t−1 should be 0.4 before t ≤ 2500, while it falls

to zero due to the sudden disappearance of causation, as
shown by (17). The cyan line in Fig. 3, representing the
estimated DCEs of ∂yt/∂z

[1]
t−1, is significantly non-zero before

t = 2500 while converging to zero after the change point. The
estimated DCE cannot behave like the actual DCE that drops
to zero suddenly because the Bayesian structure stores past
information. One can expand our proposed Bayesian model
by [28] so that the learning rate or the forgetting rate can
be adjusted. The estimated latent states are identifiable up
to linear transformations, which causes the estimated DCEs
∂yt/∂z

[1]
t−1 to be linearly transformed too. In this case, the

actual DCE of ∂yt/∂z
[1]
t−1 is 0.4 before t = 2500, while our

estimated DCEs are around -0.4. We cannot guarantee that the
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sign of causation is positive or negative, but the absolute value
of the DCE is estimated closely.

VI. SUMMARY

In this paper, we address the problem of detecting latent
confounders from observed multivariate time series. We apply
random feature-based Gaussian processes to (a) estimate the
unknown functions that describe the relationships between
the time series and (b) track the latent confounders in the
hypothesized system of time series. For estimating causal
strengths, we use the concept of differential causal effect. We
provide simulation examples that demonstrate the ability of
our approach to detect confounders.
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