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Abstract—In neuroscience, hierarchical models of brain con-
nectivity, particularly in the prefrontal cortex (PFC), are used
to understand how the brain can process sensory information,
make decisions, and perform other high level tasks. Despite
extensive research, understanding the structure of the PFC
remains a crucial challenge. To this end, we propose a data-driven
approach to studying brain signals based on Gaussian processes
and causal strengths. For discovering causations, we propose a
metric referred to as double-averaged differential causal effect.
The differential causal effect has been proposed recently, and it
can be used to quantify causal strengths in a principled way. We
studied real multivariate time series data that represent local field
potentials from the frontal lobe. The interest was in finding the
causal relationship between the medial and lateral PFC areas of
the brain, and our results suggest that the medial PFC causally
influences the lateral PFC.

Index Terms—brain, causal strength, Gaussian processes, med-
ical signal processing, time series

I. INTRODUCTION

Cognitive control is our ability to flexibly adapt behavior
according to goals and context. Cognitive control is considered
hierarchical [5] in the sense that when we plan and perform
actions, we often start with an overarching/abstract goal like
“make coffee,” which can be broken down into more concrete
subgoals, e.g., “grind beans” or “get a cup.” The frontal lobe
of the brain, particularly the prefrontal cortex (PFC), is vital
for cognitive control. The PFC is comprised of 47 areas
[13] differentially contributing to cognitive control, but how
information flows between areas of PFC and its hierarchical
causal network structure overall, is unclear. This question
takes on added importance because perturbed cognitive control
characterizes several neuropsychiatric disorders, including
schizophrenia and depression.

Neuroscientists have studied the PFC extensively to discover
how it is connected and how information flows from one
part to another. However, determining functional connectivity
and the direction of information flow within the large-scale
organization of brain networks, and PFC in particular due
to its dense recurrent bidirectional connectivity, is a critical
challenge in neuroscience. At present, functional connectivity
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metrics have only been coarsely applied to PFC. One can
divide current methods of functional connectivity based on
whether they are directed (vs. non-directed) and model-based
(vs. model-free) [3]. Directed models try to identify the cause
and effect, while non-directed models only show statistical
interdependence. Cross-correlation and Granger’s causality are
examples of a directed model where cause precedes the effect
[10], [14]. Model-based approaches assume a relationship
between two signals (Pearson correlation, for example).

In contrast, model-free approaches (such as mutual
information) speak only to signal transmission between
regions but can specify the direction of signal transmission
(i.e., with transfer entropy [18], [24]). The PFC is
astonishingly complex, with innumerable bidirectional
connections with the rest of the brain, leading to difficulty
in creating tractable models. Nonetheless, some large-scale
organizational principles have been proposed with the
assistance of functional connectivity-based models. Koechlin
and colleagues [16] proposed an anterior-to-posterior gradient
wherein higher-order control is imposed by the frontal pole.
Low-level sensory feedback is implemented at more posterior
regions, such as the premotor cortex [16]. The authors of [16]
used a linear model of blood flow patterns to support this
view, which parcellated the prefrontal cortex into relatively
large regions and assumed linear relationships between
activity in these regions. Badre and Nee extrapolated this and
other data into a general model of antero-posterior gradient
organization of PFC, based on studies that largely rely on
similar approaches [2]. A related proposal by Shenhav and
colleagues suggests that the medial parts of the frontal lobe
compute the expected value of control signals needed to
optimize behavior and transmit these signals to the lateral
parts of the frontal lobe for implementation [25]. This model,
however, also depends on studies that only coarsely identify
causal influences in the prefrontal cortex.

Our contributions in this work are that we introduce novel
analyses to study the functional connectivity and dynamics of
the frontal lobe in a data-driven manner. Our proposed method
is based on the concept of causal strength, and it is directed,
non-parametric, and principled. We apply this method to the
analysis of local field potentials (LFPs), which are strongly
correlated to local neuronal activity, and thus are closer to
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the “ground truth” of brain network function [15]. However,
the proposed method is also applicable to time series data in
general.

II. PROBLEM FORMULATION

A. Hierarchical organization of the frontal lobe

Information about the external world is transmitted from our
sensory organs to the occipital, temporal and parietal lobes of
the brain, and there is a well-studied hierarchical organization
of sensory processing across these lobes. In contrast, the
hierarchical organization of the frontal lobe is unclear. One
major theory suggests that PFC, along its anterior-posterior
dimension, is broadly organized according to the level of
abstraction of behavioral goals. Here, anterior PFC, at the
top of the hierarchy, represents abstract goals/rules, whereas
posterior PFC, more concrete goals/rules [1], [16]. Another
major theory suggests that PFC, along its medial-lateral
dimension, is broadly organized according to its role in
mediating exploration-exploitation trade-offs which are central
to our daily decision-making. Here, medial PFC enables
exploration of new options, whereas lateral PFC enables
exploitation of the current option [11]. These theories derive
from functional MRI and brain lesion data, and higher
spatiotemporal resolution of intracranial neural recordings and
methods to measure causal influences are required to resolve
PFC organization, in conjunction with cognitive control tasks
that activate PFC.

B. Description of the data

In this investigation, our neural time series data are
multi-channel, LFPs (sampled at 2kHz) derived from
intracranial EEG recordings in 10 patients evaluated for
surgical treatment of epilepsy. Recording sites, based on
clinical requirements, included extensive coverage of the
frontal lobe. We filtered data from 4-200Hz, removed
artifacts/ictal activity, and analyzed bipolar derivations of
LFPs (difference between two adjacent channels, to remove
shared noise across channels). An important way to implement
cognitive control is to apply rules which map cues to actions
according to context. During recordings, patients performed
a hierarchical rule task requiring switching and application
of abstract and concrete rules. The abstract rule cue specified
the relevant dimension (shape or orientation) of the subsequent
concrete rule cue, which specified the relevant feature to report
(rectangle/oval/bowtie or N/SW/SE). Preliminary data herein
focus on medial (anterior cingulate cortex, ACC) and lateral
(dorsolateral PFC, DLPFC) frontal lobe during the working
memory period after the abstract rule cue.

III. THE METHODOLOGY

A. Modeling the hierarchy

We propose to learn the structure of the frontal lobe by
analyzing the strength of causation between brain regions as
represented by the LFP signals. To illustrate this process,
consider two time series xt and yt, where we suppose that yt
is ‘downstream’ in the network hierarchy. We use a nonlinear

additive noise model to represent the interaction of xt and yt,
i.e.,

yt = F (yt−1, ..., yt−Q, xt−1, ..., xt−Q) + wt, (1)

where wt represents noise due to unobserved influences
and other background brain activity, and F is an unknown
nonlinear function. The model order parameter Q controls
how much of the signals’ history is used for prediction, and
Q should be larger than the propagation delay of a signal from
xt to yt for the model to accurately describe the interaction
[17]. For now Q is assumed to be fixed, but later we consider
the behavior as the parameter is varied.

While several different time lags of the signal xt are
included in the model, not all of these features contribute
equally to produce the next value of yt. For example, if
the time required to send a signal from the recording site
of xt to the recording site of yt is τ , then the partial
derivative ∂F/∂xt−q should be zero for q < τ . Since the
internal state of the brain varies from moment to moment,
the propagation delay τ also varies from trial to trial [9]. As
a result, the function F may change from trial to trial, and
we will usually produce a different estimate of F for each
trial. Our primary innovation concerns how to account for this
trial-to-trial variability while studying the function F .

Additionally, we note that the model in (1) considers
only the pairwise relationship of xt and yt. As with other
causal methods such as Granger causality, pairwise analysis
is susceptible to bias due to latent confounding variables
that influence both xt and yt [6]. While this situation is
perhaps unavoidable in neuroscience [21], we argue that the
influence of latent confounders is more likely to result in a
false-positive connection (due to the presence of information
that is useful for prediction) rather than a false-negative (which
would require that the unobserved influences perfectly cancel
out the influence of xt, which may be a non-generic situation
[4]). In this way, we interpret the pairwise analysis as being
optimistic when we attempt to detect causal influences.1 A
general way to improve the approach is to start with pairwise
analysis, and to consider ternary and higher order relationships
for pairs that passed the pairwise test. Alternatively, one may
attempt to rule out the presence of a confounder signal by
attempting to detect it [20]. For the current work, we find that
pairwise analysis is a useful starting point, and we approach
our results with an awareness of the need for a follow-up study.

B. Gaussian process regression

To learn the function F in (1), we need a nonlinear
regression tool. To this end, Gaussian process regression
(GPR) is a principled, Bayesian and non-parametric tool that
has been proven useful to model time series in several ways
[8], [12], [19], [27]. Suppose we want to estimate a functional

1In a full neuroscientific study, such pairwise analyses should be supple-
mented with additional analyses that further scrutinize the detected relation-
ships, by controlling for other observed variables and carefully outlining one’s
assumptions. Generally, some assumptions are always necessary to make the
inference of causalities identifiable [23].
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Fig. 1. Demonstration of GPR being used to model a portion of an LFP
signal. For Q = 8, we use the GP posterior to predict the evolution of LFP
signal. A GP model of the form (1) was fitted using the first 400 ms of data,
and the learned model was validated on the remaining 100 ms by examining
the prediction quality. We observe that the pairwise model fits confidently
within sample, and can also make reasonable predictions out-of-sample.

relationship of the form f : RD → R such that yi ≈ f(xi) for
some observed data set D = {(xi, yi); i = 1, ..., N}. In GPR,
we specify a Gaussian process (GP) prior for the function f ,
denoted as f ∼ GP(m, k), which means that

(f(x1), ..., f(xN )) ∼ N (m,K), (2)
mi = E(f(xi)) = m(xi), (3)
Kij = Cov(f(xi), f(xj)) = k(xi,xj). (4)

The functions m(·) and k(·, ·) are called the mean and
covariance functions respectively, and are chosen when
training the model. To estimate f(x) at a new point x, we
can obtain a posterior distribution for f(x) by conditioning
on the known data. The resulting posterior distribution is also
a Gaussian process:

f(x)|D ∼ GP(mp, kp), (5)

mp(x) = k∗(x)
⊤(K+ σ2I)−1y

=

N∑
n=1

k (x,xn)αn, (6)

kp(x,x
′) = k(x,x′)− k∗(x)

⊤(K+ σ2I)−1k∗(x), (7)

where the vectors k∗(x), α and y are common notation
used to express these formulas [22], and they are defined
by (k∗(x))i = k(x,xi), α = (K + σ2I)−1y, and y =
(y1, ..., yN ). In Fig. 1, we show an example of GPR being
used to fit the model in (1) for an LFP signal.

C. Differential causal effect

We now introduce our measure of causal strength. Consider
two signals xt, yt, and a model of the form (1). Given that yt
depends on xi for i = t − 1, ..., t − Q, we wish to quantify
how strongly each xi influences yt. When the function F
is differentiable, the partial derivatives of F measure the
sensitivity of yt to perturbations in each input. Thus, the
differential causal effect (DCE) of xi on y is defined to be
the partial derivative of F with respect to xi [7], i.e.

DCExi→yt
(yt−1,xt−1)

∆
=

∂F (yt−1,xt−1)

∂xi
, (8)

where xt−1 = (xt−1, ..., xt−Q) and yt−1 = (yt−1, ..., yt−Q).
Since DCExi→y is potentially a non-constant function of
(yt,xt), we may wish to summarize the DCE in a principled

way. A natural approach is to average the DCE over the
probability distribution of its inputs, p(yt,xt). We then define
the averaged magnitude of the DCE by

⟨DCExi→y⟩
∆
=

∫∫
|DCExi→y(yt,xt)|p(yt,xt)dytdxt. (9)

To estimate the DCE from data, the GPR approach also
yields an elegant solution. If a function F is distributed
according to a GP with mean function m and covariance
function k, i.e., F ∼ GP(m, k), then the partial derivatives
of F are also GP-distributed [26]:

∂F

∂xi
∼ GP(mi, ki), (10)

mi(yt,xt) =
∂m(yt,xt)

∂xi
, (11)

ki(yt,xt,y
′
t,x

′
t) =

∂k(yt,xt,y
′
t,x

′
t)

∂xi∂x′
i

. (12)

In particular, this result also applies to the posterior estimate
of the function F as in (5), and also a posterior estimate of the
partial derivatives. Combining (5) and (10) yields the following
estimator [7]:

D̂CExi→y(y,x) = E

(
∂F̂ (y,x)

∂xi

∣∣∣∣D,x,y

)

=

N∑
n=1

∂k(y,x,yn,xn)

∂xi
αn, (13)

where the coefficients αn are obtained from (5) and n is
ranging over the set of training vectors xn,yn that we produce
from observed signals. Often times, the kernel function k
can be differentiated easily, and there are simple expressions
available for common kernels [7], [26]. The estimator in (13) is
again a function of the test point (y,x), and it can be averaged
over the input space, just as we did for ⟨DCExi→y⟩. Since the
probability distribution p(yt,xt) is not usually available, we
can resort to a bootstrap estimate by substituting the observed
values of the signal. Thus, we have an estimator for the
averaged magnitude of the DCE,

⟨D̂CExi→y⟩ =
N∑

m=1

∣∣∣∣∣
N∑

n=1

∂k(ym,xm,yn,xn)

∂xi
αn

∣∣∣∣∣ . (14)

If desired, the posterior uncertainty in (14) can also be derived
from the GP posterior.

D. Double-averaged DCE

As mentioned in Section III-A, the precise input features
xi that strongly influence yt may vary from trial to trial. We
thus require an approach that can average across time lags, but
still retains the ability for us to ascertain what time lags are
important. To this end, we consider several different values
for the model order parameter Q. For each Q = 1, ..., Qmax,
where Qmax is specified beforehand, we fit a model of the
form (1) and we estimate ⟨DCExi→y⟩ using the GP posterior.
We then define the double-averaged DCE to be the average
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Fig. 2. Comparison of the cross-correlation, pairwise Granger causality [6], and the double-averaged DCE across pairs of channels from the ACC and DLPFC,
respectively. The cross-correlation and Granger causality analyses are suggestive of a relationship between ACC and DLPFC, but the resulting plots do not
show recognizable spatial structure across channels. The double-averaged DCE detected causal strength which was more spatially organized than the two
linear measures. In all three plots, the matrices were computed using 212 trials of the hierarchical rule task, where each channel recorded 1,000 samples of
data per trial.

of the averaged magnitude of the DCE over each xi within a
model with fixed order Q, i.e.

⟨⟨D̂CEx→y⟩⟩(Q)
∆
=

1

Q

t−Q∑
i=t−1

⟨D̂CExi→y⟩. (15)

The measure ⟨⟨D̂CEx→y⟩⟩ compensates for the fact that
the propagation delay from cause to effect varies from
trial-to-trial by averaging over the observed lags. By
considering ⟨⟨D̂CEx→y⟩⟩ as a function of Q, one can study
how changes to the time window change the causal strength
measurement, without concern that the resulting measurements
are distributed across several lags in time.

IV. RESULTS

In this section, we perform several analyses of the LFP
data using the double-averaged DCE. Before performing DCE
analysis, we first applied linear cross-correlation analyses to
explore the data set. Peaks in the cross-correlation generally
occurred well within 15ms, and thus Qmax = 30 was selected
after considering the 2kHz sampling rate. To emphasize the
relationship of model order to the timing of the brain activity,
we often specify the model order in terms of milliseconds.

In Fig. 2, we visualize how the causal strength between ACC
and DLPFC varies across sensor locations. In the proposed
method using double-averaged DCE, we observe patterns in
which some groups of adjacent channels detect more causal
strength than other regions. In contrast, we also computed
the corresponding cross-correlations and pairwise Granger
causalities, to observe how other pairwise analyses fared. The
Granger causality method use linear models with the same
model order as the double-averaged DCE approach.

In Fig. 3, we consider how varying the model order Q
allows the double-averaged DCE approach to discover the
time delays of interest for the ACC to DLPFC mechanism.
We observe that by varying the model order Q, the largest
values of the double-averaged DCE typically corresponded
to a time window of 6-8 ms. The rising causal strength as
Q increases, while Q ≤ 6, may correspond to the arrival of
increasing relevant information as the model important time
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Fig. 3. Double-averaged DCE vs. the model order. In black, we show the
average across all pairs of channels (in a pair, one channel is from ACC
and the other from DLPFC) and trials, with one standard deviation in the
shaded region. The colored curves correspond to the results for fixed pairs of
channels, but we still average over trials to produce each curve. The most
strong influence appears when the model order (interpreted as a window
length) is around 6 to 8 ms.

lags are added to the model. Before the lags, are available,
e.g., Q = 2 ms, the causal strength is low but not zero,
which is expected because even if a more delayed copy of the
ACC signal was omitted from the model, the autocorrelation
or smoothness of the signal ensures that nearby lags are still
statistically meaningful. When Q ≥ 8, increasing Q appears
to decrease the average causal strength, which indicates that
the most useful information has already been included in the
model and the time window has already captured the true lag.

In Fig. 4, we examine the trial-to-type variation of the DCE
measures. We see that individual trials vary significantly in
their behavior, and thus, to get a generalized assessment of
the strength of causation between the ACC and DLPFC, one
must either aggregate over trials, or find a way to explain
the variability in terms of a measurable variable. Despite the
trial-to-trial variability, the measured causal strength responds
comparably to Q; for small Q, the causal strength is low,
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and for Q exceeding some trial-specific threshold the causal
strength is larger, which agrees with the trends seen in Fig. 3.
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5 10 15 20 25 30 35 40 45 50
Trial index

10
9
8
7
6
5
4
3
2M

o
d
e
l 
O

rd
e
r 

Q
 (

m
s)

0.1

0.2

0.3

0.4

Fig. 4. Heatmap illustrating how the double-averaged DCE varies from trial
to trial, for a fixed pair of channels (one from PFC and one from DLPFC)
and a subset of the total number of trials. There is noticeably variability from
trial to trial, but in general all trials show the behavior that the causal strength
is small for small Q, and the measured causal strength of the ACC on the
DLPFC increases noticeably when Q passes some trial-dependent threshold.

V. DISCUSSION

Our DCE analyses suggest that medial PFC (ACC) causally
influences lateral PFC (DLPFC) during a cognitive control
task. This influence was maximal at a time lag of around
7ms, indicating the signal transmission time from ACC to
DLPFC. Although the time lag varied from trial-to-trial of
the task, it was consistently between 6-10ms, which is within
the expected physiological range. The medial PFC’s influence
occurred during processing of the abstract rule cue, which
specifies the subset of subsequent relevant concrete rules
to complete the task. Hence, the medial PFC influence on
lateral PFC is consistent with a shift from exploration to
exploitation of the relevant task rules. This provides support
for the theory of medial-to-lateral PFC interactions mediating
exploration-exploitation trade-offs [11].

VI. CONCLUSION

We addressed the problem of learning the hierarchical
organization of the frontal lobe from LFP signal data. More
specifically, the interest was on determining if the medial
PFC causally influenced the lateral PFC. Our methodology
for exploring causations was based on a recently introduced
concept, DCE, and we introduced the double-averaged DCE
as a way to address for large trial-to-trial variability while
attempting to measure causality strength from the LFP signals.
The current results of the work show evidence that medial PFC
causally influences lateral PFC.

In future work, we will extend these results in a larger scale
study of the PFC hierarchy. Crucially, future studies are needed
to determine how the proposed measure of causal strength
varies across time within a cognitive control task, how they
vary across patients, and how our results change when we
account for potential confounders in our system.
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