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Abstract—Goal-Oriented communications are an emerging
paradigm for wireless edge intelligence applications. Within this
framework, this paper compares analog versus digital modula-
tions for over-the-air classification tasks, under optimal resource
management policies that trade energy consumption, delay, and
accuracy. The resource allocation problem is formulated using
Lyapunov stochastic optimization, and is solved in an online
fashion with limited complexity. Simulation results illustrate
superior performance of analog designs when the task arrival
process pushes digital communications closer to channel capacity.

Index Terms—Goal-oriented communications, resource alloca-
tion, stochastic optimization, pulse amplitude modulation.

I. INTRODUCTION

The new generation of mobile networks will support a
plethora of services, mainly based on Artificial Intelligence
(AI) and Machine Learning (ML), which typically need low
latency and high reliability, consequently demanding for high
computational and energetic resources. These requirements are
often in contrast with the limited capabilities of the User
Equipments (UEs) (e.g. cameras, sensors, etc.) [1] [2]. To
overcome these issues, Edge Intelligence (EI) moves compu-
tational resources to Edge Servers (ESs) that are placed closer
to the UEs, thus enabling low-latency connect-compute ser-
vices such as computation offloading. The exponential growth
of data-traffic exchanged to enable the aforementioned AI
services challenge wireless communication systems to make
smart use of transmission resources, possibly adapting the
communication paradigm to these new needs. In this con-
text, Goal-Oriented Communications (GOCs) and Semantic-
Oriented communications represent emerging hot-topics [1],
[3], [4] that mitigate the unsustainable increase of commu-
nication resources by transmitting the minimum information
that is necessary to perform a specific task, while guaranteeing
a target accuracy and reliability. For instance, [5] suggests
a holistic system view, where communication, computation,
learning, and control are jointly managed in order to optimize
the latency, the reliability, and the system energy consumption.

Related Works. Seminal works on EI explored the trade-
off between energy, latency and learning accuracy [5]–[7].
Recently, a GOC framework exploiting the Gaussian Infor-
mation Bottleneck (GIB) [8], [9] was proposed in [10] for
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regression tasks. To overcome the limited applicability of
GIB to classification tasks, and non Gaussian statistics, [11],
[12] proposed an IB-inspired digital GOC framework for
image classification based on Convolutional Encoders (CEs)
coupled with proper Convolutional Classifiers (CCs) at the
ES, which can optimally manage resources also in BER-
impaired systems [13]. Many other GOCs systems has been
proposed in the recent literature, such as [4] that considers a
variational IB principle. Another possibility is to couple GOC
with Deep Joint Source Channel Coding (DJSCC) [14], [15]
where, rather than employing the classical Shannon separation
theorem, source and channel coding are jointly performed
using specific neural networks, whose (analog) outputs are
directly mapped to the transmitted signal, showing superior
performance of analog solutions in low signal-to-noise ratio
(SNR) regimes. New and more practically implementable
approaches have been recently proposed in [16]–[18], where
DJSCC is deployed within digital communication systems.

Our contribution. Aim of this work is to investigate
benefits of analog modulations in resource management and
optimization of GOC systems. Thus, differently from DJSCC
approaches in [14], [15], [17], and references therein, we focus
on the optimal management of computation and transmission
resources for analog-PAM GOC systems, with the aim of strik-
ing the best trade-off between energy, latency, and accuracy.
We formulated a long-term optimization problem that is solved
in an online fashion using Lyapunov stochastic optimization
tools, without requiring any a priori statistical knowledge of
channels and data arrivals. An (ideal) digital-PAM counterpart,
e.g., (zero-BER) pulse code modulation (PCM), has been used
for a fair and preliminary comparison with digital-GOCs.
Numerical simulations illustrate the advantages of using direct
analog-PAM GOCs with respect to digital ones, especially at
low SNRs.

II. SYSTEM MODEL

We consider a single UE that offloads a classification task
to a single ES, as illustrated in Fig. 1. As proposed in [11]–
[13], the UE’s Data Units (DUs) X to be classified, are
firstly compressed into the features W exploiting one among
a set of convolutional encoders (CEs), each one characterized
by a specific compression |W |/|X| = 1/ρ2, where | · | is
the size operator, and ρ is the compression factor in each
image dimension. This way, the system is capable to retrieve
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Fig. 1. Scheme of the proposed analog goal-oriented communication paradigm.

a first compact representation W that, according to a GOC
philosophy, has to be as much informative as possible with
respect to the inference task Y . Then, to further reduce the
load of the wireless communication link, [11]–[13] employed
another (intrinsically digital) compression codec, i.e., JPEG,
whose output bits are finally mapped on the finite alphabets
(e.g., M-QAM) of a digital GOC system. Differently, to pos-
sibly avoid the digital compression stage and analog to digital
(A/D) conversion, herein we substitute JPEG with a Principal
Component Analysis (PCA) projection. The PCA output Z
directly generates the analog symbols, which are wirelessly
transmitted by analog Pulse Amplitude Modulation (PAM)
[19], and finally passed to the remote ES for classification.
As in [11]–[13], the ES is equipped with a bank of CCs, each
one associated by the compression factor ρ to a CE at the UE1.
Each CE-CC couple is jointly trained offline to maximize the
classification accuracy, as described in the sequel.

A. Analog transmission model

The base-band PAM signal is expressed by [19]

u(τ) =

+∞∑
k=−∞

akpg(τ − kTs), (1)

where ak ∈ C is the k-th transmitted symbol, pg(τ) is the
pulse shaper, and Sr = 1/Ts is the symbol rate. We restrict
our analysis to Inter-Symbol Interference (ISI)-free systems,
by employing a Squared Root Raised Cosine (SRRC) shaping
pulse pg(τ), with two-sided baseband noise-equivalent band-
width B = Sr, roll-off factor β =0.25 [19], and unit energy.
We consider analog modulations, where the PCA-compressed
scalar outputs zk are multiplexed on the I-Q components, and
directly mapped to the PAM symbols by ak = z2k−1+jz2k.
Differently, for digital-PAM we want to compare with, the
PCA outputs should first pass through nb-bits A/D converters,
before being mapped to finite digital modulation alphabets
ak (e.g., M -QAM). This way, for each image X the analog
system is loaded by K symbols, with an overall compression
ratio Cr = K/|X|, while the digital-PAM system is loaded
by Knq bits, which corresponds to Knq/ log2(M) M -QAM
symbols of the digital-PAM. In both scenarios, the designer
could try to (dynamically) optimize the number of PCA fea-
tures K (and number nq of quantization bits in digital-PAM),

1The CEs and the CCs exploit multiple stages of convolutional and 2×2
max-pooling layers. The convolutional part of the CCs is followed by two
fully connected layers, with a softmax() at the output. All the CEs have less
than 103 parameters while the CCs have from 3×103 to 6×105 parameters.

for any possible CE-CC classification couple, i.e., compression
factor ρ. Although goal-oriented quantization is a timely
and meaningful design goal [20], for simplicity and space
limitation herein we exploit the results of the digital system in
[11], where CE outputs are efficiently converted by JPEG to a
(compressed) bit representation, which has shown to be robust
in a goal-oriented sense, e.g., accuracy-wise. Specifically, we
observed there that the overall CE-JPEG compression ratio
Cr = K(ρ)/(|W |ρ2) was scaling almost linearly with 1/ρ.
Thus, herein we fix the features K(ρ) for each compression
factor ρ, such that Cr = ⌊1.6%/ρ⌋, which grants classification
accuracy in [60− 94]%, for the chosen data-set. This way,
considering RGB images with size |X| = 256× 256× 3,
the PCA features are K ∈ {1573, 786, 393, 197, 98, 49} for
ρ ∈ {2, 4, 8, 16, 32, 64}, respectively. The PAM transmitted
signal u(τ) is received through a noisy flat-fading wireless
channel hc(τ) and, after proper SRRC matched-filtering and
one-tap equalization, it is passed to the ES for classification.
We assume the system evolves in a time-slotted fashion, where
each time-slot t has a fixed duration T . Specifically, in each
time-slot, we assume a constant channel attenuation h(t), and
we aim to deploy resource management policies based on the
instantaneous SNR

γ(t) =
ptx(t)|h(t)|2

B(t)N0
, (2)

where N0 is the noise PSD, B(t) is bandwidth, and ptx(t) =

E{|ak|2}Pavg is the TX power, with Pavg = 1
N

∑Nt

n=1
||Zn||2
K(ρ) ,

denoting the average power of the PCA compressed training
set {Zn}Nt

n=1. In each slot t, we aim to optimize the transmit
power, the bandwidth, and the compression factor ρ.

B. Training Procedure

First, each pair of CE-CCs is trained offline by minimizing
1
Nt

∑Nt

n=1 Lce(Yn, Ŷn;ϕ, θ), with respect to the CE’s and CC’s
parameters θ and ϕ, respectively, where Lce denotes the cross-
entropy loss. Then, we train the PCA compression with the
outputs of the pre-trained CC. Finally, we freeze the CEs and
PCA, and we re-train the ES’s CCs, adding to the PCA output
a white Gaussian noise, to mimic different SNR conditions.

C. Latency Model

To control our dynamic system and quantify the overall
delay experienced by a DU before processing, we introduce a
compression and transmission queue at the UE side and a clas-
sification queue at the ES side. Furthermore, we assume that:
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i) a DU compressed at the t-th time-slot must be transmitted
during the same time-slot. ii) the UE can transmit already
compressed DUs while another one is being compressed.

The numbers Ntx(t) and Nc(t) of DUs that can be trans-
mitted and compressed, respectively, in the t-th time-slot are

Ntx(t) =

⌊
2B(t)T

K(ρ(t))(1 + β)

⌋
, Nc(t) = ⌊Tfd(t)Jd(ρ(t))⌋ ,

(3)
where 2B(t)/(1+β) are the (real) features transmitted per
second during the t-th time-slot, fd is the UE-clock frequency,
and Jd(ρ) specifies the number of clock cycles that are nec-
essary to compress a DU (which are stored in a LUT indexed
by the compression factor ρ, and can be either evaluated
experimentally or computed algorithmically). Recalling now
assumptions i) and ii), and the impossibility to simultaneously
compress & transmit the first DU, the number of processable
DUs at the UE is expressed by

NUE(t) =

⌊
T − 1/fd(t)Jd(ρ(t))

[K(ρ(t))(1+β)]/2B(t)

⌋
. (4)

Thus, the UE queue evolves according to

QUE(t+ 1) = max(0, QUE(t)−NUE(t)) +A(t), (5)

where A(t) represents the arrival process of new DUs.
By denoting 1

Js(ρ)
the clock-cycles needed to classify a DU

compressed with specific ρ, the maximum number NES(t)
of DUs, which the ES can process during the t-th time-
slot, is obtained by taking the maximum number of the
(oldest) DUs stored in the ES such that the total clock-cycles∑NES(t)

i=1
1

Js(P (i)) , to classify all of them, is lower than the
maximum number Tfc(t) of clocks-cycles the ES can perform.
Then, the ES queue evolves according to

QES(t+ 1) = max(0, QES(t)−NES(t))

+ min(QUE(t), NUE(t)).
(6)

We set Qtot(t) = QUE(t) + QES(t) to quantify the overall
delay. Indeed, by Little’s law, for a fixed DU’s arrival rate A,
the average delay can be written as Dtot =

E{Qtot}
A

.

D. Energy Model

The PAM-based system employs a transmission energy
Etx(t) = Tptx(t), while the computational energies at the
UE and ES are modelled by [21],

Ec(t) = Tκdfd(t)
3, Es(t) = Tκsfc(t)

3, (7)

where κ represents the effective switched capacitance. Thus,
the overall system energy is summarized by

Eα(t) = α(Etx(t) + Ec(t)) + (1− α)Es(t), (8)

where α ∈ [0, 1], allows to implement a UE-centric energy
optimization, when α → 1, or an ES-centric one, when α → 0.

E. Accuracy Model

Similarly to [11]–[13], we model the classification accuracy
by a LUT G(γ(t), ρ(t)), which is estimated offline on the test-
set, for a set of different SNRs γ and compression factors ρ.

III. PROBLEM FORMULATION AND SOLUTION

The aim of the proposed resource allocation strategy is to
minimize, on the average, the overall energy consumption of
the system under average accuracy and latency constraints.
According to the Lyapunov framework [22], we start by
formulating a long-term energy optimization problem

min
Φ(t)

lim
T→∞

1

T

T∑
t=1

E{Eα(t)}

s.t. (a) lim
T→∞

1

T

T∑
t=1

E{Qtot(t)} ≤ Qavg

(b) lim
T→∞

1

T

T∑
t=1

E{G(ρ(t), γ(t)} ≥ Gavg

(d) ptx(t) =
γ(t)N0B(t)

|h(t)|2
≤ pmax, 0 ≤ B(t) ≤ Bmax

(e) ρ(t) ∈ S, fs(t) ∈ Fs, fd(t) ∈ Fd, γ(t) ∈ R+
0
(9)

where Φ(t) = [B(t), ptx(t), fd(t), ρ(t), γ(t), fc(t)] is the set
of the optimization variables. (a), (b) are the long-term latency
and accuracy constraints, respectively; (d) encompasses the
constraints on the transmission power and bandwidth, while
(e) represents all the feasibility constraints for the discrete
optimization variables. We denote by S the set of the employ-
able compression factors, while Fs and Fd are the sets of the
clock frequencies of the ES and the UE respectively.

According to Lyapunov Optimization, we can derive an
instantaneous optimization procedure that, on the basis of the
system conditions (queue status, channel gain, etc.), performs
a resource allocation policy that asymptotically tends to the
optimal solution of (9) [22]. The long-term constraints (a), (b),
are handled by virtual queues defined as

Z(t+ 1) = max(0, Z(t) + µ(Qtot(t)−Qavg))

Y (t+ 1) = max(0, Y (t) + ν(Gavg −G(t)),
(10)

where µ, ν are step-sizes used to improve the convergence
speed of the algorithm. Then we build the Lyapunov function
and the associated Lyapunov Drift plus penalty function

L(t) = Y (t)2 + Z(t)2

∆p(t) = ∆(t) + V E{Etot(t)|Θ(t)},
(11)

where Θ(t) = {Z(t), Y (t)}, ∆(t) = E{L(t+1)−L(t)} is the
Lyapunov Drift function [22], and the parameter V controls the
trade-off between objective function minimization and long-
term constraints satisfaction.

Removing expectations and exploiting upper-bounds [22],
omitted due the lack of space, the optimization decouples
between UE and the ES. Specifically, the UE’s optimization
problem is

min
Φd

− 2TQTXB

(1+β)K(ρ)
+ TV α

(
γ
N0B

|h|2
+ κf3

d

)
− νY G(γ, ρ)

s.t. (a) 0 ≤ B ≤ B
′

max

(b) ρ ∈ S, fd ∈ Fd, γ ∈ Γ ⊂ R+
0 ,

(12)
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TABLE I
CHANNEL SETTING.

Dmax[m] fc[GHz] Bmax[kHz] E{|h|2} [dB]
200 7.5 200 130

where Φd = [fd, γ, ρ, B, ptx] is the set of the UE opti-
mization variables and QTX = 2µ2(QUE − QES) + µZ.
The left-hand side of constraint (d) in (9) has been directly
substituted in the objective function, while the right-hand
side of the same constraint has been captured in B′

max =

min
(
Bmax,

QUEK(ρ)(1+β)
2T , pmax

γ|h|2
N0B

)
, which is the mini-

mum between the maximum available bandwidth at the UE
side, the bandwidth necessary to empty the transmission
queue, and that one that satisfies constraint (d).

Problem (12) is mixed-integer, since the variables (fd, ρ)
lie in discrete sets. Furthermore, for any fixed couple (fd, ρ),
(12) is still non-convex, due to γB in the objective function.
However, the simulation results in Fig. 2 suggest that the
accuracy curves maybe safely fitted by concave functions
with respect to the SNR γ: this way, problem (12) would
be separately convex with respect to B and γ, and it could
be solved by iterative alternating optimization procedures.
However, since we evaluated the classification performance on
a limited (discrete) set Γ of SNRs, as shown in Fig. 2, we threat
also γ as a discrete optimization variable, thus reducing the
problem to a linear program with respect to the transmission
bandwidth B. Specifically, for any fixed triple (fd, γ, ρ) the
objective function becomes

f(B) =

[
V
γN0

|h|2
− 2QTX

(1+β)K(ρ)

]
TB − λ(fd, γ, ρ). (13)

When the ratio m = γN0

|h|2 ≤ 2QTX

V (1+β)K(ρ) , the objective
function is linear and decreasing, with optimal solution given
by (p∗tx, B

∗) = (mB′
max, B

′
max). Otherwise, the objective

function is increasing, and the optimal solution is (p∗tx, B
∗)=

(0, 0), which corresponds to avoid the transmission. Thus, the
global optimal solution is obtained by computing the closed
form solution for each couple (γ, ρ). Then, for any fixed
compression ρ, the UE’s clock-frequency fd is simply the
minimum one that grants Nc(t) ≥ Ntx(t). Finally, the solution
is obtained by the triple (γ, ρ, fd) that minimizes (13).

The decoupled ES’s optimization problem turns out to be

min
fc∈Fs

−QCNES + TV (1− α)κf3
c , (14)

where QC = 2µ2QES + µZ, and is solved by a short
exhaustive search for fc ∈ Fs.

IV. SIMULATION RESULTS

We considered a flat fading channel characterized by
a Jackes-Clarke auto-correlation function [23]. The fading
model is assumed to be Rayleigh with zero mean and unit
variance. The average path loss has been set according to the
ABG model in [24], as summarized in Tab.I. A key novelty
of this work resides in the UE’s dynamic resources allocation
policy, whose effectiveness can be better highlighted consid-
ering a pure UE-centric optimization strategy (i.e., α = 1),

Fig. 2. Accuracy vs SNR for different ρ.

as we did in the simulations. We assumed κdev = κser =
1.097 × 10−27 [ s

cycles ]
3, Fd = [0.1, 0.2, . . . , 1]×1.4 GHz

and Fs = [0.1, 0.2, . . . , 1]×4.5 GHz. We set the maximum TX
power to pmax = 1 W, and the time-slot duration to T = 50
ms, which fits the channel coherence time.

A. Performance of analog goal-oriented compression

We trained our GOC framework on a subset of the GTSRB
data-set [25], with 43 classes, composed of 1213 RGB images
of traffic signs, divided in 776 images for training, 194 for
validation, and 243 for the test. The CE-CC classifiers have
been trained for the analog-PAM system with the SNRs
γ ∈ [−10, 20] dB shown in Fig. 2, as described in sec.
II-B. Fig.2 shows a graceful accuracy degradation, which is
acceptable also at rather low SNRs for several compression
factors ρ. This behaviour, already highlighted in [14], [15],
represents one of the most important strength of the (analog)
direct modulation schemes, since digital M-QAM systems
request higher SNRs to avoid BER, which could excessively
deteriorate classification accuracy.

B. Performance comparison

We tested the proposed analog dynamic resource allocation
strategy for different accuracy constraints and different image
arrivals rates, under a delay constraint equal to 200 ms. We
compared the results with the digital M-QAM counterpart
described in Section II, whose resource optimization slightly
modifies [11], and is not detailed due to lack of space. Specif-
ically, we considered an ideal, capacity achieving, M-QAM
PAM with zero-BER, where the bandwidth and the modulation
index are jointly optimized, under the same constraints. The
M-QAM system employs nq = 8 quantization bits, which
turned out to be the best choice in this scenario. To make sense
of the results, which highly depend on the channel conditions
and the design parameters, we define the loading factor metrics

ηdig(t)=
nqA(t)K(ρ(t))/τ

Cmax(t)
, ηana(t)=

A(t)/τ(1+β)

2Bmax/K(ρ(t))
,
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Fig. 3. Energy/Latency trade-off for different loading factors (nq = 8bit).

which, depending on the image arrival rates A(t), measure
how much the systems are loaded (in image/seconds), with
respect to the maximum load they would be capable to handle
using the maximum bandwidth Bmax and power Pmax, with
Cmax(t) denoting the Shannon channel capacity. Fig. 3 shows
the accuracy/latency trade-offs for different arrivals rates Aavg ,
reporting also the average traffic load experienced at conver-
gence by the two resource allocation policies. The curves are
explored by increasing the value of the parameter V , from the
bottom right to the top-left, which is the optimal point that
strictly satisfies the delay constraint, where we computed the
two average load factors. Actually, the (ideal) digital system
has lower energy expenditure for very low loading factors, i.e.,
when the system is over-designed resource-wise. Conversely,
when Bmax and Pmax are better fitted to the actual traffic
needs, the analog solution outperforms the digital one. Intu-
ition suggests that when bandwidth and power resources are
abundant, ideal digital-PAM with zero-BER can outperform
analog-PAM, because it is capable to clean the AWGN noise
at the receiver side, without suffering the accuracy degradation
due the (small) quantization noise introduced at the transmitter.
This advantage however, may significantly reduce in practical
systems, with non-negligible BER that, for stringent-latency
constraints, may request sub-optimal short channel codes. This
aspect deserves to be more deeply investigated for MQAM-
PAM equipped with PCA-based compression, which should
suffer less than JPEG for residual BER, when transmission and
computations resources are managed by proper optimization
policies, similarly to what has been done in [13].

V. CONCLUSION AND FUTURE WORK

This paper shades some light on analog vs digital GOC
systems, taking into account an holistic resource management
strategy, for image classification. The results confirm that
analog GOC systems are indubitably attractive for their easier
implementation and capability to work at very low SNRs, and
make better use of resources if the system is pushed towards its
capacity limit. Future works will consider BER-aware resource

management [13], optimal selection of the number of PCA
features (and quantization bits), as well as frequency selective
fading channels, and multi-user/multi-server management.
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