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Abstract—Finding computationally feasible solutions to linearize
active antenna array transmitters is a timely challenge in modern
cellular networks, particularly in 5G and the emerging 6G
systems. In this paper, we propose a new modeling and parameter
estimation approach to characterize the individual power amplifier
(PA) units of an active antenna array subject to crosstalk
while relying only on over-the-air observations. Additionally,
we describe a beam-sweeping based forward model learning
procedure and the corresponding closed-loop digital predistortion
(DPD) learning algorithm, to efficiently linearize millimeter-
wave phased-array transmitters under crosstalk-induced load
modulation. The provided numerical results demonstrate excellent
parameter estimation and linearization performance, reaching
adjacent channel power ratios (ACPRs) as low as –50 to –60 dB
with realistic evaluation assumptions.

Index Terms—5G, 6G, active array transmitters, antenna
crosstalk, digital predistortion, linearization, power-efficiency

I. INTRODUCTION

The ability to achieve good power-efficiency while still
meeting the stringent transmit waveform quality requirements
is one of the most important implementation challenges in
modern radio communication systems, such as the 5G New
Radio (NR) [1], [2]. To this end, digital predistortion (DPD)
[3], [4] is the most common approach for mitigating the power
amplifier (PA) induced nonlinear distortion, particularly in
cellular base-stations. When properly applied, DPD technology
allows pushing the PAs closer towards their saturation region,
and hence achieving largely improved power-efficiency, while
still meeting the transmitter error vector magnitude (EVM) and
out-of-band (OOB) emission requirements. This is also the
main technical scope of this paper, with specific emphasis on
modern active antenna array transmitters.

In the context of active antenna arrays and beamforming
networks, the current state-of-the-art DPD solutions [5]–[10]
concentrate on computationally feasible processing and learn-
ing architectures that allow for simultaneously linearizing
multiple and mutually different PAs. Most of the reported
array DPD solutions, especially in millimeter-wave (mmWave)
networks, rely on measuring or building the so-called main-
beam observation signal, which is used as the basis for DPD
parameter learning. In such a beamformed domain, a traditional
single-input–single-output DPD learning problem is effectively
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obtained, which yields the technical basis to linearize the
main-beam signal [6]. In terms of the practical feedback or
observation receiver arrangements [5], [10], two alternative
approaches have been considered. The first one is a classical
conductive approach, where the individual PA output signals are
measured through directional couplers. The second approach
relies on over-the-air (OTA) feedback, with external observation
receiver(s). The classical conductive approach requires couplers
for each transmit PA/antenna path which may not be feasible –
especially in mmWave systems – hence, the emphasis is more
towards the OTA approaches.

An additional important challenge in any array or multiple-
input multiple-output (MIMO) transmitter is the crosstalk and
other interactions between the antennas. In the linearization
context, this is known to result in beam-dependent nonlinear
behavior due to the load modulation phenomenon [1]. Fur-
thermore, in digital array/MIMO transmitter scenarios, the
crosstalk can largely degrade the performance of ordinary
single-input DPD models, and hence different more evolved
multi-dimensional polynomial-based linearization models have
been proposed [11]–[13]. However, the complexity of such
multi-dimensional models grows really aggressively with the
number of TX chains, and thus they can be seen as feasible only
with a small number of TX paths. To alleviate the complexity
issue, [14] proposed a novel dual-input DPD architecture along
with a proper crosstalk model that allows linearizing the TX
efficiently with more favorable complexity.

In this paper, we address the challenging problems of
linearization and parameter estimation of nonlinear active
antenna arrays under crosstalk via over-the-air observations.
Compared to the existing state-of-the-art literature, the main
contributions of the paper can be described as follows:

• We derive and provide an explicit nonlinear array trans-
mitter model with detailed insight on crosstalk and no-
crosstalk conditions, applicable to arbitrary array/MIMO
scenarios. Such explicit model makes numerical evalu-
ations and assessment of nonlinear active arrays more
straight-forward, compared to the existing implicit dual-
input PA/transmitter models.

• We develop and propose a novel parameter identification
approach and algorithm for arbitrary array/MIMO trans-
mitters under crosstalk, to characterize the individual PA
units and their nonlinearities while utilizing only OTA
observations.
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• We then apply the modeling and parameter identification
methods in a practical mmWave phased-array transmitter
context, where a selected subset of the antenna units are
used for observation purposes through physical coupling.

• We develop and describe an efficient direct learning
approach for estimating the phased-array single-input DPD
coefficients where the involved forward-path non-linear
array model coefficients are obtained using the above-
proposed parameter identification approach.

• We provide a large collection of numerical results, demon-
strating the excellent nonlinear forward model estimation
accuracy as well as the corresponding phased-array
linearization performance while varying the fundamental
system parameters such as the estimation signal-to-noise
ratio (SNR), the amount of the parameter estimation
samples, and the PA forward model order.

The rest of this paper is organized as follows. First, the active
array linearization-related system model is described in Section
II. Then, the proposed nonlinear PA model identification
approach is described in Section III, applicable to arbitrary
active arrays. Then, the utilization of the nonlinear model
for linearizing phased-arrays is considered and described in
Section IV. In Section V, extensive numerical results are
provided related to evaluating the performance of the proposed
active array model identification and phased-array linearization
techniques, while the conclusions are drawn in Section VI.

II. SYSTEM MODEL

The considered system scenario is illustrated in Fig. 1. In the
following, all models are expressed through complex-valued
baseband equivalents in discrete-time domain. Additionally, for
readability purposes, explicit time dependence is omitted such
that, e.g., the signal a1k(n) is expressed as a1k.

A. PA and Nonlinear Array Models

1) Implicit Expression for PA Output Signals: Using a
complex dual-input polynomial structure [14], [15], the output
signal of the kth transmit path or PA can be described as

b2k =

(P−1)/2∑
p=0

αkpa
(p+1)
1k a∗1k

p +

(P−1)/2∑
p=0

βkpa
p
1ka

∗
1k

pa2k

+

(P−1)/2∑
p=1

γkpa
(p+1)
1k a∗1k

(p−1)a∗2k

, (1)

where αkp, βkp, γkp are the complex PA model coefficients,
P is the polynomial order and ()∗ refers to the complex
conjugation. Denoting the coupling coefficients by λki, the
crosstalk signals are given as

a2k =

K∑
i=1,i̸=k

λkib2i. (2)

In practice, the coupling coefficients can be obtained, e.g., by
measuring the scattering parameters (the S-parameters) of the
antenna array.
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Fig. 1. Block diagram of a multi-antenna TX system model with K transmit
paths. Each path consists of one PA unit connected to an antenna element.

It can be noted that the expressions in (1) and (2) are implicit
in nature. Therefore, we next derive explicit expressions for
the PA outputs, that are dependent only on the actual input
signals. Through such explicit models, numerical evaluations
and assessment of nonlinear array systems can be made
substantially more straight-forward, compared to the implicit
expressions in (1) and (2). This is one contribution of the paper.

2) Explicit Expression for PA Output Signals: To derive
explicit expressions of the PA output signals under crosstalk,
we switch to vector-matrix notations, and adopt the so called
augmented modeling approach [16] where both the b2k’s
and b∗2k’s are stacked together. To this end, for K transmit
antennas, we first define two vectors b ∈ C(2K×1) and
d ∈ C(2K×1) as b = [b21 b22 · · · b2K b∗21 b∗22 · · · b∗2K ]

T and
d = [d1 d2 · · · dK d∗1 d∗2 · · · d∗K ]

T , where

dk =

(P−1)/2∑
p=0

αkpa
(p+1)
1k a∗1k

p. (3)

Then, by further defining ∆XY ∈ C(2K×2K) as

∆XY =

[
X Y
Y∗ X∗

]
, (4)

where the elements of X ∈ C(K×K) and Y ∈ C(K×K) read

Xkj =

{
1, if k = j

−λkj

∑(P−1)/2
p=0 βkpa

p
1ka

∗
1k

p, if k ̸= j
(5)

and

Ykj =

{
0, if k = j

−λ∗
kj

∑(P−1)/2
p=1 γkpa

(p+1)
1k a∗1k

(p−1), if k ̸= j
(6)

an explicit expression for b can be obtained through fairly
straight-forward derivation steps, expressed eventually as

b = (∆XY)−1d. (7)

As b is stacking both b2k’s and b∗2k’s, only the first K
elements are eventually selected from b. Note that Xkj and
Ykj are functions of βkp and γkp, respectively. In the special
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case of absence of load modulation, βkp = 0 and γkp = 0, and
thus Xkj = 0 and Ykj = 0 ∀k ̸= j. In that case, ∆XY will be
an identity matrix and b = d. Thus, as the load modulation in
the system reduces, ∆XY converges to an identity matrix.

B. OTA Measurement Model

The assumed OTA observation model for the lth observation
receiver, with l = 1, 2, ..., L, is expressed as

rl =

K∑
k=1

ηlkb2k + vl (8)

where vl denotes complex additive white Gaussian noise
(AWGN). In cases where some of the antenna units of the
transmit array are used for observing through OTA coupling, as
in Fig. 2 in the phased-array context, the channel coefficients
ηlk can be assumed to be known. In practice, they can be
obtained through S-parameters measurements of the antenna
array, similar to the coupling coefficients λki.

III. PROPOSED PA MODEL IDENTIFICATION METHOD

First, based on (1), the PA output of the kth transmit path
for N -sample sequences can be expressed in vector form as

b2k = [G(0)(a1k) G(1)(a1k,a2k) G(2)(a1k,a2k)]

× [αT
k βT

k γT
k ]

T

= G(a1k,a2k)θk

(9)

where a1k, a2k and b2k are complex-valued (N × 1) vectors
containing sequences of N samples of the signals a1k, a2k
and b2k, e.g., a1k = [a1k(0), ..., a1k(N − 1)]T . The vectors
αk ∈ C(Q×1), βk ∈ C(Q×1), γk ∈ C((Q−1)×1), and θk ∈
C((3Q−1)×1) contain the PA model coefficients, where Q =
(P −1)/2+1 and C(A×B) denotes a complex-valued matrix of
size A×B. The matrices G(.) contain the corresponding basis
functions, such that G(0)(a1k) ∈ C(N×Q), G(1)(a1k,a2k) ∈
C(N×Q), G(2)(a1k,a2k) ∈ C(N×(Q−1)), and G(a1k,a2k) ∈
C(N×(3Q−1)).

Combining now (9) with the observation model in (8), a total
system model for length N sequences with L ≥ 2 observation
receivers and K transmit paths is obtained. To this end, the
observed sequences can now be expressed as

r = Fθ + v, (10)
where

F =

η11G(a11,a21) . . . η1KG(a1K ,a2K)
...

. . .
...

ηL1G(a11,a21) . . . ηLKG(a1K ,a2K)

 (11)

while r = [r1
T . . . rL

T ]T and v = [v1
T . . .vL

T ]T are
complex-valued vectors of size LN × 1. Additionally, θ =
[θT

1 . . .θT
K ]T ∈ C(K(3Q−1)×1) and F ∈ CLN×(K(3Q−1)).

Finally, an estimate of the total parameter vector θ can be
obtained as a least squares solution of (10), expressed as

θ̂ = F†r, (12)

where F† is the pseudo-inverse of F. It is noted that a set of
received sequences rl is known from measurements with L

Algorithm 1 Proposed iterative least-squares procedure for the
identification of dual-input PA model coefficients θkp from over-
the-air measurements with at least two observation receivers.
Variables with (̃) are local estimates.

1: Input: a1k, ηlk, λki, and rl
2: Set initial estimates of PA model output b̃2k(0) = 0
3: Define desired accuracy NMSEdes = 0
4: Set initial value NMSE = ∞
5: while NMSE < NMSEdes do
6: i = i+ 1
7: Use b̃2k(i− 1) in (2) to compute ã2k(i)
8: Use ã2k(i) in (12) to compute θ̂(i)
9: Use ã2k(i) and θ̂(i) in (9) to compute all b̃2k(i)

10: Use b̃2k(i) in (8) to compute all r̃l
11: Calculate NMSE = max(NMSE(rl, r̃l(i)))
12: end while
13: return PA model coefficients θ̂ = θ̂(i)

PA K 

PA 1 

a1K(n)

a11(n)

a(n) DPD Tx Chain

Observation 
Receiver 1

Observation 
Receiver 2

b21(n)

a21(n)

r1(n)

r2(n)

b2K(n)

a2K(n)

Fig. 2. Illustration of a phased-array transmitter where the first and the last
antenna elements of the array are acting as OTA observing antennas for the
nonlinear array forward modeling.

observation receivers, while the transmit PA input signals a1k
are known by default – however, the sequences a2k are not
directly observable. Thus, the PA model coefficients need to be
estimated in a recursive manner, due to the recursive definition
of the PA model outputs in (1). A least squares-based solution
for the estimation is described in Algorithm 1. Here, ã2k, θ,
b̃2k, and r̃l are updated (in this order) in each iteration of the
algorithm, with tilde referring to local variables, until the error
between r̃l and the actual measurements rl is minimized.

Finally, it is noted that with digital MIMO arrays, and thus
independent signals in different antenna paths, the estimation
system matrix F is of full rank, with any reasonable modulated
sequences, allowing for a unique solution. However, in case of
phased-arrays addressed in the forthcoming section, the antenna
sequences are highly correlated, and thus additional measures
are needed for remedying the involved rank-deficiency.

IV. APPLICATION TO PHASED-ARRAY LINEARIZATION

As a concrete example, we next focus on the linearization
of millimeter-wave phased-array transmitters, applying the
forward model identification solution described in the previous
section. Specifically, we assume that a few of the antenna
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elements of the transmit array are used for OTA observation
purposes, through physical coupling, as illustrated in Fig. 2.

A. Beam-Sweeping Procedure for PA Model Identification

In the phased-array transmitter context with K transmit
antennas but only a single input signal a1k = a ∀k, the
regression matrix F in (11) becomes rank-deficient. To remedy
this, we propose a beam-sweeping procedure, where the beam
is swept over M ≥ K different beamforming angles, using
independent input signals, and the measurements and the
regressors are simply concatenated to form the new vector r
and matrix F. After doing these steps, PA model identification
is performed following the procedure in Algorithm 1. Such
beam-formed measurements can in practice be gathered either
through a dedicated beam-sweeping period, or alternatively,
over time when the base-station is anyway changing the beam
from one slot to another for different scheduled users.

B. Per-Beam DPD Learning

We employ an offline direct learning approach to find the
optimum DPD coefficients for linearizing the array for a given
beamforming direction, or beam index m ∈ {0, 1, ...,M − 1}.
In this approach, the forward path non-linear array model is
first identified as described above. Then, the actual DPD system
is learned in closed-loop manner as described below.

As for the actual DPD processing model, a simple single-
input polynomial model is employed in this work. Denoting
the DPD complex baseband input signal by a(n), as illustrated
also in Fig. 2, the corresponding DPD output signal ã(n) reads

ã(n) =

(Pdpd−1)/2∑
p=0

βm
dpd,pa

(p+1)(n)a∗p(n) (13)

The DPD coefficients are denoted by βm
dpd,p where p is the

nonlinearity order while the superscript m denotes the beam-
index within the overall set of available beams.

DPD model parameters are updated by minimizing the error
between the input waveform a(n) and the local replica of
the intended received signal in beam direction m, which
we denote by ỹm(n) = WH

mb̃2,m(n), with b̃2,m(n) =
[b̃21,m(n) b̃22,m(n)...b̃2K,m(n)]T . The error signal reads

em(n) =
ỹm(n)

G
− a(n), (14)

where G is the estimated complex linear gain of the forward
path, including the array model and the beamforming gain.
This error signal contains the information about the residual
distortion at the intended receiver, which is then minimized
in an iterative fashion, utilizing a gradient-descent type of
algorithm. To this end, the self-orthogonalized block-LMS
learning rule for the coefficient vector can be formulated as

βm
dpd

∗
(i+ 1) = βm

dpd
∗
(i)− µR−1XTe∗m, (15)

where X is the regression matrix built from Ndpd sam-
ples of the input signal a(n), and R = E[x(n)xH(n)] is
the correlation matrix of the DPD input vector x(n) =
[a(n) a2(n)a∗(n) a3(n)a∗2(n)]T , shown here for Pdpd = 5.
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Fig. 3. PA forward model identification performance with P = 3 for
varying observation SNR and for three different signal lengths per beam.
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Fig. 4. PA forward model identification performance with Nsym = 1 for
varying observation SNR and for four different PA model orders P .

V. NUMERICAL RESULTS AND ANALYSIS

A. General Evaluation Setup

To assess the performance of the proposed methods, we
utilize a set of measured PA coefficients [9] obtained with
Anokiwave PAs operating at 28GHz. These correspond to the
α coefficients of the dual-input model in (1). The synthesis of
the other dual-input model coefficients β and γ is then done
by introducing controlled perturbations to α. To this end, these
coefficients are set at 25% strength compared to α, which
reflects a realistic load modulation scenario at mmWaves. A
5G NR standard compatible OFDM waveform with 200MHz
bandwidth and 60 kHz sub-carrier spacing is adopted, with
an oversampling factor of 4 which allows for both the PA
model identification as well as the actual DPD processing and
parameter learning. Additional windowing is adopted on top
of the baseline OFDM processing to better band-limit the ideal
digital waveform. Furthermore, a phased-array transmitter with
a total of 16 antennas is considered, of which K = 14 are used
for transmitting while L = 2 antennas are used for observing.
In the model identification, the number of considered beams
M = K = 14 while Nsym = {1, 4, 7} OFDM symbols per
beam are considered.

B. PA Model Identification Performance

Fig. 3 shows the normalized mean-squared error (NMSE)
performance of the proposed PA model identification algorithm
for different observation SNR levels, and for fixed PA model
order of P = 3. The NMSEs are calculated by averaging over
50 Monte Carlo simulations. Further, we study and show the
NMSE performance for different polynomial orders of the PA
model (P ) while keeping the number of OFDM symbols per
beam fixed at Nsym = 1. These results are shown in Fig. 4.
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Fig. 5. Linearization example showing the beamformed spectra at far-end
user without and with DPD, for PA model estimation NMSE of –30 dB.
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Fig. 6. Linearization performance of the proposed direct-learning DPD
system, in terms of EVM (%) and ACPR (in dBc), for different PA forward
model estimation NMSEs.

Clearly, larger polynomial order P calls for larger SNR, or
alternatively, more OFDM symbols per beam as shown already
in Fig. 3. Overall, these results show that acquiring highly
accurate forward model estimates is feasible, especially since
the observation SNR is typically high [7], [8].

C. DPD Linearization Performance
Next, we assess the actual linearization performance of the

proposed DPD approach. We consider an example case with PA
model of order P = 5 and the DPD model of order Pdpd = 9,
while otherwise assume the same array transmitter scenario as
above. The step-size of the LMS-based learning algorithm in
the closed-loop system is set as µ = 0.0003. We first illustrate
the linearization performance of the proposed DPD system by
plotting the normalized power spectral density (PSD) of the
received signal at the far-end user, with and without DPD, for
one of the used beams. Such example is shown in Fig. 5, for
an identification NMSE of –30 dB, evidencing highly-accurate
linearization. Fig. 6 then shows the EVM and the adjacent
channel power radio (ACPR) performance of the DPD system
for different levels of forward model identification NMSEs,
averaged across all the beams. It can be observed that we are
able to reach EVM levels in the order of 1.5 − 2.5% and
ACPR values of around −55 dB to −50 dB under realistic
model estimation NMSEs of −30 dB to −20 dB.

VI. CONCLUSIONS

In this work, we provided a computationally feasible
algorithm and concept to estimate dual-input behavioral models
for the individual PA units of an arbitrary active antenna array,
under crosstalk, while utilizing only over-the-air observations.
Furthermore, a direct-learning mmWave phased-array lineariza-
tion method was proposed, harnessing the nonlinear array for-
ward modeling stage. Extensive numerical results demonstrated
the excellent accuracy of both the forward modeling and the
actual linearization methods. Specifically, forward modeling
NMSEs in the order of –30 dB and linearization performance
reflecting EVMs and ACPRs of around 1.5−2.5% and −55 dB
to −50 dB, respectively, were shown to be feasible. Our future
work will focus on assessing the methods through real-world
RF measurements.
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