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Abstract—High-speed passive optical networks (PONs) use
advanced signal processing techniques like inter-symbol inter-
ference (ISI) equalization. While equalizers based on maximum
likelihood sequence estimation (MLSE) via the Viterbi algorithm
achieve excellent performance, they suffer from excessive imple-
mentation complexity except for very short channel responses.
In this work, we employ a pre-equalizer for joint “channel
shortening” and branch metric computation needed for the
Viterbi algorithm. We then propose an optimization method for
iteratively updating the pre-equalizer towards optimal end-to-end
MLSE performance, by minimizing the multi-class cross-entropy
loss based upon the path metrics. Numerical evaluations demon-
strate that our proposed solution for MLSE with a small number
of taps achieves significant ISI equalization improvements w.r.t.
prior art approaches, and a performance close to MLSE with a
high number of taps.

I. INTRODUCTION

Passive optical networks (PONs) provide a widely-used
technology for delivering multi-gigabit broadband access like
e.g. fiber-to-the-home services. Research and standardization
efforts in PON are currently driven towards increasing the
signaling rate per wavelength, while keeping costs low by em-
ploying bandwidth-limited opto-electronic receivers in com-
bination with advanced digital signal processing (DSP) tech-
niques [1]. For instance, the latest PON standard developed by
ITU-T, called G.9804, defines 50G binary signaling whereas
typically 25G class receivers will be used in deployment.
Hence, such PONs experience high levels of inter-symbol
interference (ISI), arising from strong chromatic dispersion
and bandwidth-limited reception.

The feed-forward equalizer (FFE) and decision-feedback
equalizer (DFE) are popular choices for ISI equalization due to
their low implementation complexity and robust performance.
In this work, ISI equalizers based on maximum likelihood
sequence estimation (MLSE) [2] are considered, since they
may provide significant performance gains over FFE/DFE.
A well-known efficient, programming solution for MLSE is
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obtained by the Viterbi Algorithm [3]. The classic MLSE
provides a hard-output (binary) sequence, whereas soft-output
variants exist as well, like for instance the soft-output Viterbi
algorithm (SOVA) or the Bahl-Cocke-Jelinek-Raviv (BCJR)
algorithm.

A key challenge of Viterbi algorithms is the notoriously high
implementation complexity. The data path structure (i.e., the
number of Viterbi states) scales exponentially with the number
of ISI channel taps. Except for very short channels, the hard-
ware implementation may require excessive power and area
consumption. Other issues involve performance degradation
and unpredictable results due to non-ideal noise assumptions.
In general, the absence of noise correlation between different
received samples is assumed, whereas such noise correlation
is often present in practical systems due to for instance
bandwidth limitations.

A. Related work

Already in the 1970s the combination of linear equalization
with Viterbi algorithms has been investigated to reduce the
overall complexity [4]–[7]. The purpose of the linear equalizer
is to preceed the Viterbi algorithm and to reduce the number of
consecutive transmit symbols that affect any received sample,
i.e., to “shorten” the channel impulse response to an acceptable
target length. These early works propose different strategies for
choosing the target channel impulse response that is perceived
by the Viterbi algorithm after pre-equalizing the original
channel. Once the target channel is determined, the optimal
pre-equalizer may be computed via a closed-form expression
(or using adaptive gradient-based schemes).

More recently, in the context of (coherent) optical systems
[8] and 50G-PON [9], the combination of an FFE with a
digital postfilter has been proposed as pre-equalizer. The FFE
removes all ISI (up to some residual error) at the cost of strong
increased noise coloring by filtering the received samples. The
postfilter then acts as a whitening filter by re-introducing some
ISI taps in a controlled manner equal to the target number of
Viterbi taps L. The noise whitening filter can be considered
here the target channel impulse response.
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Alternatively, so-called deep neural networks (DNN) to-
gether with machine learning (ML) techniques have also been
studied for ISI equalization in optical systems. In addition
to full DNN-based equalizers [10]–[12], also hybrid DNN-
Viterbi solutions are proposed in [13]. Notice in [13] the
presence of channel shortening equalizers is assumed if nec-
essary. DNN-based equalizers have several advantages like
data-driven learning without any signal model assumptions,
advanced data filter structures that are demonstrated in many
cases to achieve excellent performance. However, they require
elaborated offline training procedures on large data-sets via
advanced optimizers, whereas re-training during run-time is
limited and very costly. In addition, large networks are used
in combination with pruning and/or multiple initialization
strategies to avoid training convergence to poor performing
solutions. The run-time complexity may be excessive high due
to a large number of weights and layers.

B. Main contributions

To enable the use of a small number of Viterbi states, chan-
nel shortening solutions are adopted in [4]–[9] by employing
pre-equalizers. Although they may work reasonably well in
some practical settings, these solutions suffer from ISI leakage
and inherently introduce additional noise coloring by filtering
the received samples. They remain heuristic in nature and
are not guaranteed to work optimally under all conditions.
In this work, we propose to train a pre-equalizer via ML-
based techniques in order to optimize the end-to-end MLSE
performance. The novelty exists in using the internal Viterbi
path metrics within the learning loss function. Hence, the
pre-equalizer will learn to directly compute the Viterbi input
metrics while taking any channel shortening requirements into
account. This model-free or data-driven learning, without any
channel and/or noise assumptions, yields high performance in
case of strong non-ideal transmission impairments. Further, as
pre-equalizer we propose a fully linear structure by means of a
filter-bank comprising a set of parallel finite impulse response
(FIR) filters. Combined with a small, efficient Viterbi algo-
rithm, this results in cheap(er) run-time complexity compared
to a DNN structure with many layers and weights [9], [13],
without sacrificing any performance as will be demonstrated
via simulations (see Section IV).

II. VITERBI ALGORITHM FOR ISI EQUALIZATION

Consider digital transmission over a PON communication
link as illustrated in Fig. 1. Without loss of generality, non-
return to zero on-off keying (NRZ-OOK) modulation is used,
such that the digital transmit signal xk at time index k is
represented by the binary constellation {+1,−1}. The digital
received samples at time index k are denoted by yk and
obtained by the ADC sampler. The dispersive and noisy
end-to-end channel includes fiber propagation as well as the
hardware-induced distortion effects. It is assumed to be static,
causal and with finite memory of length M . That is, any
received sample yk is affected by maximum M consecutive
transmit symbols.

Fig. 1: Digital representation of next-generation PON commu-
nication link.

Standard MLSE for ISI equalization boils down to selecting
the most likely (i.e. the one with maximum likelihood) sym-
bol sequence from all possible transmit sequences given the
received samples [2]:

x∗ = arg max
x

P(y|x1, . . . , xK )

= arg min
x
− log(P(y|x1, . . . , xK )) (1)

where P(y |x1, . . . , xK ) is the probability that y = [y1, . . . , yK ]
is observed given that the x = [x1, . . . , xK ] is transmitted.

A well-known efficient MLSE implementation is the Viterbi
algorithm. While a detailed explanation of the Viterbi algo-
rithm is out of scope, a few key concepts will be introduced
that are relevant for understanding the pre-equalizer. Note that
the pre-equalizer works for any MLSE variant by using the
appropriate path metrics.

A. Viterbi Algorithm

Generally, an L-tap MLSE equalizer assumes L ≥ M is the
expected number of consecutive transmit symbols that affect
any received sample. Consequently, it can be written that

P(y|x1, . . . , xK ) =
K∏
k=1

P(yk |xk−L+1, . . . , xk). (2)

such that the problem (1) reduces to

x∗ = arg min
x

K∑
k=1
− log(P(yk |xk)), (3)

where xk = [xk−L+1, . . . , xk] is defining the transmit symbol
sub-sequence of length L.

Viterbi-type algorithms solve problem (3) by finding
the optimal path through a 2L−1-state trellis. Each state
s ∈ [1,2L−1] corresponds to one particular symbol sub-
sequence [xk−L+2, . . . , xk] being transmitted at time step k
from 2L−1 feasible sub-sequence combinations. The transition
from a previous state s′ (corresponding to the sequence
xk−L+1, . . . , xk−1) to the current state s (corresponding to
the sequence xk−L+2, . . . , xk) is associated with a likelihood
ck(s, s′).

ck(s, s′) = − log(P(yk |xk−L+1, . . . , xk)). (4)

These are also called the branch metric (BMs). Further, let
vk(s) denote the likelihood of state s at time k in the trellis

vk(s) = − log(P(y1, . . . , yk |xk−L+2, . . . , xk)). (5)

These are the so-called path metrics (PMs). Key is that the
optimal path is computed incrementally using the previously
computed path and branch metrics, by sequentially processing
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all received samples and pruning unlikely paths at every step.
That is, the PM vk(s) can be computed recursively from the
two feasible predecessor states s′ as

vk(s) = min
s′
[vk−1(s′) + ck(s, s′)], ∀k > 1. (6)

The standard trace-back approach is to accumulate PMs for up
to a depth of D = 5L before making a final symbol decision
[14] with negligible performance loss.

For ease of notation in Section III, we also define the
extended PMs as:

ṽk(s, s′) = vk−1(s′) + ck(s, s′) (7)

These extended PMs, denoted as ṽk(s, s′), correspond to the
log of the joint probability on state s and s′, and are equivalent
to the log probabilities before the minimization to calculate the
regular vk(s) as min

s′
[ṽk(s, s′)].

B. BM Computation ck(s, s′)

To implement performant ISI equalization with the Viterbi
algorithm, accurate BM computation is required by estimating
the log-likelihood function ck(s, s′) in (4). Hence, the proba-
bility density functions (PDF) of the received samples of the
communication channel need to be learned or estimated. In
general, the received samples corresponding to every transmit
sequence xk are modelled by a white Gaussian PDF with a
mean and noise variance. The means may then be estimated via
tracking a linear FIR channel [14]. Alternatively, 2L separate
means and noise variances can be directly estimated as well,
allowing for nonlinear channel and signal dependent Gaussian
noise modelling. More advanced BM models compute the
transition probabilities via histogram metrics measured at the
receiver or employ DNNs trained offline [13].

Important to consider is the case where the number of
Viterbi taps is smaller than the channel ISI length (L < M).
Such a small number of Viterbi taps is often used regardless
of the channel ISI length in order to limit the implementation
complexity. Consequently, the estimation accuracy of the BM
ck(s, s′) will degrade and the assumption in (2) will no longer
be valid. To prevent performance degradation of the Viterbi
algorithm, a (linear) pre-equalizer is typically employed to
“shorten” the ISI channel to L taps as outlined in Section I-A.
In general, any other non-ideal channel and/or noise assump-
tions may degrade the Viterbi algorithm if not properly taken
into account.

III. NOVEL ML-BASED PRE-EQUALIZER FOR VITERBI
ALGORITHMS

We specifically consider ISI equalization with the Viterbi
algorithm where the number of Viterbi taps is smaller than the
channel ISI length (L < M). To overcome in such scenarios the
limitations of the heuristic approaches outlined in Section I-A,
we propose a novel ML-based pre-equalizer for the Viterbi
algorithm as illustrated in Fig. 2. Key is that the pre-equalizer
is trained using a learning loss function based on the Viterbi
extended PMs, in order to directly optimize the end-to-end
performance. In fact, the pre-equalizer effectively combines

the roles of “channel shortening” and BM computation given
the desired number of Viterbi taps L.

Although any data filter structure can be used for the pre-
equalizer (like DNNs for instance), we propose a single bank
of 2L FIR filters, yielding efficient run-time and training
complexity via adaptive gradient-based schemes. Each filter
estimates the optimal BM ĉk(s, s′) for one specific extended
state (s, s′):

ĉk(s, s′) = w(s, s′)Tyk + b(s, s′), (8)

where yk = [yk−N+1+∆, . . . , yk+∆] is the current observation of
N received samples with delay parameter ∆; and w(s, s′) =
[w1
(s,s′)

, . . . ,wN
(s,s′)
] and b(s, s′) are the filter taps and bias tap

respectively corresponding to state (s, s′). Note that the bias
tap can be considered an FIR tap to which the input sample
is a unit-valued constant.

In the remainder of this section, we derive an optimal
loss function and propose an iterative training procedure that
minimizes the optimal loss function.

A. Optimal loss function

Observe the Viterbi algorithm may be seen as a probabilistic
state classifier of new received samples, in which the states
correspond to the consecutive (overlapping) binary transmit
sub-sequences of length L − 1. Every time step k, the current
state is classified by selecting the minimum extended PM of
all pairs of s and previous state s′ in (6). Hence, the pre-
equalizer can be trained by using supervised ML techniques
based upon the so-called multi-nomial or multi-class cross-
entropy loss function of the extended PMs ṽk(s, s′), averaged
over all training examples k:

L = −
1
K

∑
k

∑
s,s′

δ(s = s∗k, s
′ = s∗k−1) log

(
exp (−ṽk(s, s′))∑

p,p′ exp (−ṽk(p, p′))

)
(9)

Here s∗
k

and s∗
k−1 are the true realized states at time steps k and

k − 1, corresponding to the actual transmitted bits. The Dirac
delta function δ(s = s∗

k
, s′ = s∗

k−1) = 1 if the extended state
(s, s′) corresponds to the true realized states (s∗

k
, s∗

k−1), and is
zero otherwise. The factor

∑
p,p′ exp (−ṽk(p, p′)) normalizes

the probabilities of the different states at time k to the range
[0,1].

Using such a loss function minimizes the Kullback-Leibler
divergence between the true states and the classified states
corresponding to the extended PMs inside the Viterbi al-
gorithm. In other words, minimizing this loss function will
drive the pre-equalizer towards computing BMs ĉk(s, s′) that
in combination with the Viterbi algorithm yield estimated
probabilities ṽk(s, s′) close to one for the transmitted states
and close to zero for the non-transmitted states. The Viterbi
algorithm will hence effectively solve problem (3) without
assumption (2) being valid, enabling end-to-end optimization
of the MLSE-based equalizer. Notice the pre-equalizer will not
explicitly aim to compute the exact BM corresponding to the
true probability in (4), but will merely provide a parametric
BM estimate that optimizes the proposed loss function.

1427



© 2021 Nokia23
Nokia internal use

Rx Samples
𝑦

Estimated BMs
�̂� (0,0)

Estimated PMs
𝑣 0

Estimated symbol
�̂�

Extended PMs

𝑣 0,0

𝑣 0,1

𝑣 1,0

𝑣 1,1

�̂� (0,1)

�̂� (1,0)

�̂� (1,1)

Viterbi 
Trace-back

Min

Min
𝑣 1

Index min PM

Index min PM

Training 
update

Pre-Equalizer

Fig. 2: Block diagram of the training method for the proposed ML-based pre-equalizer in combination with the Viterbi algorithm
for ISI equalization. The case for binary transmission is depicted with L = 2 Viterbi taps and D denoting the trace-back depth.

It is stressed that using the BMs ĉk(s, s′) within the cross-
entropy loss function, e.g., as proposed in [13], is not working
well for the case L < M . Using the BMs would directly
optimize the estimation of P(yk |xk−L+1, . . . , xk) in (4) based
on the current window of received samples being inputted to
the pre-equalizer, without taking into account the information
all previous received samples required for optimizing the
objective in (3). This approach does not cope well with for
instance noise coloring or channel impulse responses longer
than L as a consequence.

B. Optimization Algorithm

The so-called stochastic gradient descent (SGD) algorithm
is the workhorse of ML techniques, and may be used here as
well for adapting the coefficients of the pre-equalizer structure
towards minimizing the proposed loss function. The derivative
of the loss function w.r.t. pre-equalizer w(s,s′) for one training
example k is calculated as follows:

∂L

∂w(s,s′)
=

(
δ(s = s∗k, s

′ = s∗k−1) −
exp (−ṽk(s, s′))∑

p,p′ exp(−ṽk(p, p′))

)
·

(
yk +

∂vk−1(s′)
∂w(s,s′)

)
, (10)

where the derivative of vk−1(s′) takes the contribution of all
previously selected BMs into account. We have observed in
simulations that ignoring the derivative of vk−1(s′) during
training yields negligible loss after convergence. In principle,
any number of previous BMs could be taken into account
for the derivatives and the update rules. The derivative for
b(s, s′) can be derived similarly. Mini-batch training may be
used for faster convergence, together with possibly random
update orders. The optimization method for the ML-based pre-
equalizer is listed as Algorithm 1 with µ denoting the learning
rate. Since the proposed loss function is convex for affine input
structures, the training algorithm is guaranteed to converge to
the optimal solution for linear pre-equalizers.

IV. SIMULATIONS

We numerically evaluate the proposed pre-equalizer with
MLSE first for an ideal 5-tap FIR channel with additive white

Algorithm 1: Proposed SGD algorithm for the ML-
based pre-equalizer with MLSE

repeat
for every training example k do

Compute ĉk(s, s′) = w(s, s′)Tyk + b(s, s′)
Compute ṽk(s, s′) = vk−1(s′) + ĉk(s, s′)
Update w(s, s′) = w(s, s′) − µ∇w(s,s′)L
Update b(s, s′) = b(s, s′) − µ∇b(s,s′)L
Update vk(s) = min

s′
[ṽk(s, s′)]

end
until convergence

Gaussian noise (AWGN) according to

yk =

M∑
m=1

hmxk−m + nk

where the variance of noise signal nk corresponds to
the inverse SNR. The simulated bit error rate (BER) re-
sults are shown in Fig. 3 for a symmetric ISI channel
[0.1,0.3,0.9,0.3,0.1]. The proposed pre-equalizer consists of
four (parallel) 16-tap filters which are trained with the optimal
PM-based loss function. Here the 5-tap MLSE with exact
BM calculations is the theoretically-optimal ISI equalizer.
The proposed ML-based pre-equalizer with MLSE is able to
approach this theoretic optimum with L = 3 or L = 5 taps.
Yet for higher SNR levels there is a small performance loss.
Keep in mind that the filter-bank-based pre-equalizer is only
computing parametric estimates of the BMs. More advanced
pre-equalizer structures might provide small gains at high SNR
levels. However, typically the FEC BER threshold is located
at low SNR and high BER levels.

Second, we numerically evaluate different ISI equalizers for
experimental 50Gb/s PON traces, which have been obtained
according to the experimental setup described in [12], [15].
A Mach-Zehnder modulator has been used with the laser
wavelength set to 1342 nm and 30km single-mode fiber, in
order to achieve a high level of fiber dispersion around 83
ps/nm. The photoreceiver consists of a 25 Gb/s class avalanche
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Fig. 3: The simulated BER versus the input SNR for 5-tap
FIR channel with AWGN.

photo diode integrated with transimpedance amplifier, and is
captured with a real-time sampling scope. The captured data
is then pre-processed offline by a baud-rate Mueller-Muller
CDR and then used for training and BER evaluation.

The evaluated BER versus the received optical power (ROP)
is shown in Fig. 4. Notice that here the proposed MLSE
with L = 2 already operates close to L = 3 taps, due to
the smaller amount of ISI in this measured trace than in
the FIR channel example. The standalone MLSE with high
number taps is suffering from performance loss due to the
presence of colored noise and distortion in this scenario, and
therefore cannot be used as performance upper bound. Further,
the proposed ML-based pre-equalizer with MLSE outperforms
the state-of-the-art solution in [9] consisting of a 2-tap MLSE
preceeded by a 16-tap FFE and 2-tap noise whitening filter
(NWF). The BER numbers obtained from [12] are shown as
well, corresponding to a DNN equalizer (the version with 1
output symbol in particular) that is trained and evaluated on the
same measurements, except that a different resampling script
has been used to obtain baud-rate receive samples.

V. CONCLUSION

We specifically consider MLSE for ISI equalization where
the number of Viterbi taps is smaller than the ISI channel
length (i.e., L < M). This keeps the implementation complex-
ity of Viterbi algorithms limited. To improve in such scenarios
the heuristic prior-art approaches, we propose a novel ML-
based training method for Viterbi algorithms in combination
with a pre-equalizer. Key is that the pre-equalizer is trained
using a learning loss function based on the Viterbi extended
PMs, such that the end-to-end MLSE performance is directly
optimized. We have demonstrated via numerical evaluations
that our proposed solution for Viterbi equalizers with a small
number of taps achieves significant performance improvements
w.r.t. prior art approaches.
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Fig. 4: The simulated BER versus the receive optical power
for the 50Gb/s PON measurement traces.
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