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Abstract—In this paper, we present an improvement of an
existing method to estimate the channel parameters of an under-
water acoustic channel in a wideband scenario. For underwater
acoustic communications, the channel is characterized by paths
having both time delay and Doppler scale. In this paper we
focus on using a linear frequency modulated (LFM) preamble to
estimate the channel parameters. We propose an improvement to
the state-of-the-art method, which utilizes the fractional Fourier
transform (FrFT), and show that matched filtering and the FrFT
method can both be viewed as integral transforms having the
same kernel. We argue that, contrary to the prevailing belief
in the literature, matched filtering is superior compared to the
FrFT method for channel parameter estimation. We support our
findings using numerical experiments.

Index Terms—Delay-Doppler channel, wideband, fractional
Fourier transform, matched filtering.

I. INTRODUCTION

The main difficulty of underwater acoustic communications
is the fact that the channel severely distorts the transmitted
signal. Since the carrier frequency is comparable to the signal
bandwidth, one has to deal with a wideband scenario. In
particular, the Doppler effect cannot be approximated by a
frequency shift, but manifests itself as a Doppler scale1. In
order to be able to communicate through such a channel,
one first has to estimate the channel parameters, such as
attenuation, time delay and Doppler scale.

Estimating channel parameters has long been a topic of
interest in (underwater acoustic) communications research. In
real-time scenarios, achieving high throughput in the com-
munication channel is critical. To this end, researchers have
been focusing on wideband scenarios for underwater acoustic
communications. Several methods have been proposed, using
preambles, postambles, or a combination of both [1]. Using
a preamble only is to be preferred as it allows the receiver
to demodulate the data without having to buffer the entire
data package. Moreover, a preamble is also used for signal
detection and synchronisation.

One of the simplest estimation methods is based on comput-
ing the cross-correlation between the received preamble and a
delayed and Doppler-scaled version of the known preamble
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1Note that the Doppler scale is the factor by which the frequencies in

the signal are multiplied. One could thus interpret the Doppler scale as a
frequency-dependent Doppler shift.

[1], [2]. The time delay and Doppler scale are estimated
by finding the maximum of the wideband cross-ambiguity
function. Despite its simplicity, the method is computationally
intensive. Moreover, if the channel consists of more than one
path, cross-correlating only once is not optimal anymore, as
the different paths will influence each other’s peak location.

In order to improve the estimation result, a matching pursuit
decomposition algorithm was proposed [3]. Here, the channel
parameters are found in a greedy way. First the received
signal is correlated with a dictionary of delayed and scaled
signals. After identifying the signal having maximum cor-
relation (corresponding to the strongest path), this signal is
subtracted from the received signal, thereby forming a residual
signal. The correlation process is then applied repeatedly to
the residual signal, until a predefined number of paths are
identified. Although this method leads to improved estimation
results, it remains computationally intensive (or even more
so). Berger et al. [4] proposed a similar approach based on
compressed sensing.

Mason et al. [5] proposed the use of a preamble con-
sisting of a cyclic prefix and two identical OFDM symbol
frames. Since the Doppler scale of the channel causes di-
lation/compression of the preamble, the repetition period of
the two OFDM frames in the preamble changes. The re-
ceived preamble is correlated with preambles having different
repetition periods, from which the (time delay and) Doppler
scale is estimated. However, this method only works under the
assumption of a single Doppler scale for all paths (sometimes
called the shallow water assumption).

Zhao et al. [7] introduced a method based on the fractional
Fourier transform (FrFT). By using a linear frequency modu-
lated (LFM) preamble, the channel parameters are estimated
using a two-step approach. This method shows a significant
improvement in estimation accuracy compared to the match-
ing pursuit method of [3], while keeping the computational
complexity acceptable. Additionally, the method can be used
to estimate multiple paths with different Doppler scales.

In this paper, we propose an improvement of the above
mentioned FrFT method in terms of computational complexity.
In addition, we show that the FrFT method is similar to
matched filtering; both methods can be viewed as integral
transforms having the same kernel. Our findings indicate that,
contrary to the prevailing belief in literature [7], [8], matched
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filtering outperforms the FrFT method for channel parameter
estimation.

II. LINEAR FREQUENCY MODULATED PREAMBLE

A linear frequency modulated (LFM) preamble is a signal
of the form

s(t) = w(t)ejφs(t),

where w(t) is a rectangular window having support (0, T ) and
φs(t) is the phase given by

φs(t) = 2πf0t+ πkt2 + φ0.

Here f0, k and φ0 are the starting frequency, the modulation
slope and the initial phase, respectively. With this, the (time-
varying) instantaneous (ordinary) frequency of s(t) is given
by

fs(t) =
1

2π

dφs(t)

dt
= f0 + kt, t ∈ (0, T ).

Within the time interval (0, T ), the frequency will linearly in-
crease from the starting frequency f0 to the stopping frequency
f1 = f0 + kT .

During propagation, the preamble is affected by the chan-
nel. Each path will undergo a certain attenuation, delay and
Doppler scale. Since we are primarily interested in estimating
the delay and Doppler scale, we will ignore the attenuation.
Typically, the parameters of the different paths are found one
by one (matching pursuit based), so that we will focus in this
paper on the estimation of the channel parameters of one single
path. That is, the received signal r(t) is of the form

r(t) = s(α0(t− τ0)) + n(t),

where τ0 and α0 denote the delay and Doppler scale of the
channel, respectively, and n(t) denotes an additive noise term.

Ignoring the additive noise component, the received signal
is still an LFM signal, as

s(α0(t− τ0)) =

= w(α0(t− τ0))e
j(2πf0α0(t−τ0)+πkα2

0(t−τ0)
2+φ0)

= w(α0(t− τ0))e
j(2πf ′

0t+πk′t2+φ′
0),

where

f ′
0 = f0α0 − kα2

0τ0

k′ = kα2
0

φ′
0 = −2πf0α0τ0 + πkα2

0τ
2
0 + φ0.

Note that the support of the received signal is (τ0, τ0+T/α0)
and that the instantaneous frequency is given by

fr(t) =
1

2π

dφr(t)

dt
= f ′

0 + k′t = f0α0 − kα2
0τ0 + kα2

0t.

III. CHANNEL PARAMETER ESTIMATION

In this section we discuss two methods to estimate the
channel parameters, namely a two-dimensional (delay and
Doppler scale) matched filter and the FrFT.

A. Continuous Matched Filter
A two-dimensional matched filter correlates the received

signal r(t) with a predefined delayed and Doppler scaled
version of the LFM signal s(t). That is, the output of the
matched filter is defined as

yMF(τ, α) =

∫ +∞

−∞
s∗(α(t− τ))r(t)dt

=

∫ τ+ 1
αT

τ

e−j(2πf0α(t−τ)+πk(α(t−τ))2+φ0)r(t)dt.

(1)

Note that when the noise in the channel is ignored, (1) is
equivalent to the well known wideband ambiguity function [9]
up to a multiplicative factor

√
α. We can define an estimator

for the channel parameters based on the two-dimensional
matched filter as

(α̂0, τ̂0) = argmax
α,τ

|yMF(τ, α)|.

B. Existing method using the FrFT
Zhao et al. [7] proposed a channel estimation method using

a two-step approach; the FrFT in conjunction with a one-
dimensional (delay) matched filter. We will see that the FrFT
is an optimization done over two variables, of which in the end
only one is used. For that reason a (redundant) second step is
needed. More details about this redundancy will be described
in Section III-C. For the sake of completeness, we present a
summary of the procedure of Zhao et al. [7] here.

1) FrFT step: The FrFT is defined as [10]

Fϕ[r](u) =√
1− j cot(ϕ)

∫ ∞

−∞
ejπ

(
(t2+u2) cot(ϕ)−2ut csc(ϕ)

)
r(t)dt. (2)

Fig. 1 shows an example of the FrFT for three LFM signals
in the time-frequency domain that have been disturbed by
different channel parameters. The FrFT can be understood
as projecting the signal onto a new axis that forms a (so-
called fractional) angle ϕ with respect to the time axis. In
the first step, for each (disturbed) LFM signal, the “optimal
fractional angle” ϕ is estimated by maximizing its projection
on the fractional Fourier axis. Although an iterative approach
for finding ϕ was proposed in [7], the goal is to find

(ϕ̂0, û0) = argmax
ϕ,u

|Fϕ[r](u)|. (3)

As visualized in Fig. 2, see the upper (blue) triangle, the
optimal fractional angle is directly related to the Doppler scale
by2

− cot (ϕ0) = k′ = α2
0k. (4)

Hence, the relation between the estimated parameters ϕ̂0 and
α̂0 is given by

α̂0 =

√
−cot(ϕ̂0)

k
. (5)

2Note that ϕ is defined positive counter clockwise, hence the minus sign
in (4).
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Fig. 1: Fractional Fourier Transform of a LFM signal.

2) Matched filter step: In [7], given the estimated Doppler
scale α̂0, the delay was proposed to be estimated using a one-
dimensional matched filter as

τ̂0 = argmax
τ

|yMF(τ, α̂0)|.

C. Proposed Improvement

We can eliminate the second (matched filter) step since
the information about the delay τ0 is already available in the
location u0 of the peak of the FrFT spectrum. By eliminating
this second step, the computational costs of the estimation
procedure can be reduced. Fig. 2, in particular the middle
(green) and lower (yellow) triangles, shows the geometrical
relationship between u0 and τ0. We have

− cot(ϕ0) =
α0f0
τ0 − t1

=
α0f0

τ0 − u0 sec(ϕ0)
. (6)

Note that Huang et al. [8] also mentioned the relationship
between u0 and τ0 and that they defined an expression akin
to (III-C) (cf. [8], eq. (16)). However, (6) is simpler and does
not involve sampling parameters.

Summarizing, after solving (3), we obtain α̂0 from (5), and
τ̂0 using (6) as

τ̂0 = û0 sec(ϕ̂0)− α̂0f0 tan(ϕ̂0).

IV. RELATION BETWEEN MF AND FRFT

In this section we will show that, in contrast to what is
reported in [7] and [8], the matched filter and the FrFT
approach are highly related and will result in similar results.
Additionally, we will explain that the reported improvements
(in [7] and [8]) of the FrFT method over matched filtering are
only due to a difference in gridding and the use of iterative
approaches, and is not an inherent property of the FrFT.

Fig. 2: Parameter relations based on the received LFM signal,
with parameters τ = τ0, α = α0, ϕ = ϕ0 and u = u0.

A. Derivation of the relation

By inspection of (1), we conclude that

|yMF(τ, α)| =

∣∣∣∣∣
∫ τ+ 1

αT

τ

e−j(2πf0α(t−τ)+πk(α(t−τ))2+φ0)r(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ τ+ 1

αT

τ

e−jπ(2(αf0−kα2τ)t+kα2t2)r(t)dt

∣∣∣∣∣
=

∣∣∣∣∣
∫ τ+ 1

αT

τ

KMF(t, τ, α)r(t)dt

∣∣∣∣∣ ,
where

KMF(t, τ, α) = e−jπ(2(αf0−kα2τ)t+kα2t2),

is the kernel function of the integral transform

(TMFr)(τ, α) =

∫ τ+ 1
αT

τ

r(t)KMF(t, τ, α)dt.

Similarly, by inspection of (2), we have∣∣Fϕ[r](u)
∣∣ =

=

∣∣∣∣√1− j cot(ϕ)

∫ ∞

−∞
ejπ

(
(t2+u2) cot(ϕ)−2ut csc(ϕ)

)
r(t)dt

∣∣∣∣
=

∣∣∣√1− j cot(ϕ)
∣∣∣ ∣∣∣∣∫ ∞

−∞
e−jπ(2ut csc(ϕ)−cot(ϕ)t2r(t)dt

∣∣∣∣
=

∣∣∣√1− j cot(ϕ)
∣∣∣ ∣∣∣∣∫ ∞

−∞
KFT(t, ϕ, u)r(t)dt

∣∣∣∣ ,
where

KFT(t, ϕ, u) = e−jπ(2ut csc(ϕ)−cot(ϕ)t2),

is the kernel function of the integral transform

(TFTr)(ϕ, u) =

∫ ∞

−∞
r(t)KFT(t, ϕ, u)dt.

It turns out that the two kernel functions are identical, that is
KMF(t, α, τ) = KFT(t, ϕ, u).
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To show that these two kernel functions are identical, we
observe from Fig. 2, by combining the two expressions for
cot(ϕ), that

αf0 − kα2τ = −kα2t1.

Moreover, since t1 = u sec(ϕ), we obtain that

αf0 − kα2τ = −kα2u sec(ϕ) = u csc(ϕ),

where the last equality follows from (4). Hence, we have

KMF(t, τ, α) = e−jπ
(
2(αf0−kα2τ)t+kα2t2

)
= e−jπ(2ut csc(ϕ)−cot(ϕ)t2)

= KFT(t, ϕ, u), (7)

as required.

B. Interpretation of the relation

Since both kernel functions are identical, computing the
FrFT can be viewed as matched filtering the received
signal with an LFM signal. Except for the scaling by
|
√
1− j cot(ϕ)|, which is known, the two methods only

differ from each other in the integration interval. That is, the
matched filter method correlates the received signal with a
windowed LMF signal (having support (τ, τ +T/τ)), whereas
the FrFT method correlates the received signal with an LFM
signal having a support equal to the interval over which
the correlation is computed, typically the symbol length plus
the size of a guard interval. As a consequence, the FrFT
method also correlates the received signal outside the region of
interest, which contains noise and possible prefix information.
This information will, in general, negatively influence the
estimation performance, as confirmed by the simulation results
presented in the next section.

V. NUMERICAL SIMULATION

In order to numerically validate the above findings, we
performed computer simulations. To ensure a fair comparison
between the two methods, we used the proposed FrFT-based
estimation scheme as described in Section III-C and evaluated
both methods on a (two-dimensional) grid where the grid
points were related through (4) and (6).

The simulations were done using an LFM signal and
channel (single-path model) with parameters as the ones used
in [7], which are summarized in Table I. These parameters
are representative for an underwater acoustic communication
scenario. For the guard interval we used zeros. The guard
interval is longer than the maximum delay in the channel such
that there is no interference from the other communication
frames.

TABLE I
PARAMETER SETTINGS FOR THE COMPUTER SIMULATIONS.

True LFM signal Grids Channel
f0 5 [kHz] M 21 α U(1, 1.02)
f1 15 [kHz] L 4000 τ U(0, 0.25T ) [s]
T 50 [ms] ∆α̂ 0.001 n(t) CN (0, σ2

n)
Ts 1.25 · 10−2 [ms] ∆τ̂ Ts

We performed 100 Monte Carlo runs. The resulting normal-
ized mean squared-errors of the Doppler scale E∥α0−α̂∥2 and
time delay E∥τ0−τ̂∥2 are shown in Fig. 3a and b, respectively,
where E(·) denotes statistical expectation. From the results we
can draw the following conclusions.

• Overall, the matched filter shows slightly better results.
Previous papers, including [7] and [8], did not use equal
grids for both methods or used iterative methods for only
one of them, leading to an incorrect conclusion that the
FrFT approach outperforms the matched filtering method.

• For high SNR values, the two methods give identical
results, confirming the relationship shown in Section IV.

• The estimation errors reach a plateau at high SNR values,
which is due to a finite sampling of the parameter space.
Refining the sampling grid will lower both estimation
errors.

The computational complexity of both methods is comparable
since both have efficient implementations; the fast Fourier
transform (FFT) for matched filtering and the fast fractional
Fourier transform for the FrFT [11]. As a consequence, both
methods have a computational complexity of O(L logL),
where L is the FFT or FrFT size.

VI. CONCLUSION

In this paper, we proposed an improvement on the existing
method from [7], which is based on the FrFT, to estimate
the channel parameters of an underwater acoustic channel in
a wideband scenario. Additionally, we compared the channel
parameter estimation performance of the FrFT and matched
filtering using an LFM preamble. We showed that the two
methods are highly related in the sense that, as viewed as
integral transforms, both have identical kernels and only differ
from each other in the integration interval, which is sub-
optimal in the FrFT case. Computer simulations supported
the conclusion that matched filtering is superior to the FrFT
approach. This is in contrast to previously reported results in
literature, which were obtained using unequal sampling grids
and iterative methods.
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