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Abstract—This paper focuses on addressing the challenge of
estimating multiple-input multiple-output (MIMO) channels for
wireless communication between a ground base-station and a
moving vehicle. One recently recognised model for time-varying
channels incorporates spatial selectivity, which is referred to as
beam squint, and is particularly relevant in the millimeter-wave
(mmWave) range. In such scenarios, it is essential to account for
the beam squint when attempting to recover channel parameters
using a training sequence. However, the use of a training sequence
alone may be insufficient for this purpose. To overcome this
issue, in this work, we propose a channel estimation approach
that exploits information provided by the control module of
the vehicle, namely its velocity. The estimation problem that
is designed, regards the channel both in a parametric and a
non-parametric form and the alternating direction method of
multipliers is utilised to efficiently solve it. It is demonstrated via
simulations that considerable gains can be achieved if information
from the control unit of the vehicle can be appropriately
introduced and exploited.

Index Terms—UAV communications, massive MIMO,
mmWave, alternating method of multipliers, control module

I. INTRODUCTION

In the frame of 5G and envisioned 6G use-cases [1], it is
expected that large bandwidths in the mmWave range will be
utilized, along with massive Multiple-Input Multiple-Output
(MIMO) technologies [2], [3]. This leads to the requirement
of more elaborate channel models that should also capture,
e.g., the so-called beam squint effect which manifests itself
because of measurable propagation delays along the employed
antenna arrays [4], [5]. Moreover, unmanned aerial vehicles
(UAVs) are increasingly considered as integral part of modern
wireless communications systems [6], [7]. The participating
UAVs raise a number of challenges related to the involved
channels and their modelling, including their time variability
and the existence of strong line-of-sight components [8].

There are many channel estimation techniques that consider,
for example, the beam squint effect, though, in time invariant
channels like [9], [10] which propose a random sampling struc-
ture, [11], [12] and [13] that build upon sparsity arguments
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and [14] which employs subbands. In the same spirit, [15]
and [16] further consider time varying channels. Focusing on
more realistic techniques when UAVs are involved in MIMO
communication systems, their main drawback is that, due to
the beam squint effect and the time varying channels, the
employed (short) training sequences are insufficient leading
to reduced estimation performance. Thus, new approaches are
required in order to provide exploitable estimations of the
channel parameters.

In this paper, the problem of channel estimation is studied
during the transmission from a ground base station to a UAV.
By adopting a time varying channel model in the mmWave
range that considers, also, the beam squint effect, and multiple
antennas in both ends of the communication link (as opposed
to the above works), the number of parameters to be estimated
is quite large and, at the same time, the available training
sequences are short. To alleviate this issue, the proposed
technique relies on the cooperation of the communication and
the control modules of the UAV [17]. The latter feeds the esti-
mated vehicle’s velocity into the communication module that
performs the estimation of the channel parameters, and specif-
ically the angle-of-arrival. This way, the additional “side”
information that can be introduced and exploited for improved
estimation performance. The velocity-aided approach has a
significant advantage over other methods, such as position-
based ones, as the system can obtain accurate and reliable
velocity estimates through the inertial measurement unit. This
is especially useful in challenging environments where Global
Positioning System (GPS) signals may be weak or unavailable.
The proposed channel estimation problem regards the channel
both in a parametric and a non-parametric form and the Al-
ternating Direction Method of Multipliers (ADMM) is utilised
to efficiently solve it. The efficacy of the proposed technique
is demonstrated via extensive simulations.

In the following, Sec. II describes the channel model and
the communication system. The problem formulation and the
proposed estimation algorithm are presented in Sec. III. The
performance evaluation of the proposed algorithm is provided
in Sec. IV and, finally, Sec. V concludes the paper.
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Fig. 1. Connection between the AoA θ(t) and the velocity v(t) of the UAV
(top-view).

Notation: A, a and a denote a matrix, a vector and a scalar,
respectively. The complex conjugate transpose and transpose
of A are denoted as AH and AT, respectively. IN represents the
N×N identity matrix. CN (a,A) denotes a complex Gaussian
vector having mean a and covariance A.

II. CHANNEL AND SYSTEM DESCRIPTION

We consider the transmission from a ground-BS (TX) to a
UAV (RX). Without loss of generality, for simplicity, both TX
and RX are equipped with a Uniform Linear Array (ULA) with
N antenna elements. Moreover, it is assumed that Orthogonal
Frequency Division Multiplexing (OFDM) is employed with
M subcarriers. In each OFDM symbol, P out of M subcarriers
are used for transmitting pilot symbols for channel estimation
purposes. Finally, the OFDM symbol duration is T = MTs,
where Ts is the sampling period.

The n-th element of the RX steering vector aRX ∈ CN×1,
with n = 0, 1, . . . , N − 1, can be written as:

[aRX(θ(t), p)]n = e−j
2πnd sin θ(t)

λ (1+ p∆f
fc

), (1)

where fc is the carrier frequency and ∆f = W/M is the sub-
carrier spacing, with W being the transmission bandwidth.
θ(t) is the Angle of Arrival (AoA). Moreover, λ and d are
the wavelength and the inter-element distance of the array,
respectively. The n-th element of the TX steering vector is
given by: [aTX]n = e−j

2πnd sinϕ(t)
λ , where ϕ(t) denotes the

Angle-of-Departure (AoD). The system model for the p-th sub-
channel at the t-th time instance is expressed as:

yp(t) = g(t)e−j2πfD(t)aRX(θ(t), p)a
H
TX(ϕ(t))︸ ︷︷ ︸

≜Hp(t)

sp +wcom(t),

(2)
where g(t) ∈ C is the complex channel gain, fD(t) is the
Doppler spread which is related to the vehicle’s instantaneous
velocity v(t) as fD(t) = v(t) fcc , sp ∈ CN×1 is the training
symbols for the p-th pilot subcarrier, wcom(t) ∈ CN×1 is a
complex AWGN vector with [wcom(t)]i ∼ CN (0, σ2

com), for
i = 1, 2, . . . , N , fc is the carrier frequency and c the speed of
light.

III. PROPOSED TECHNIQUE

In this section, the channel estimation problem will be
formulated and, then, the proposed solution will be described
in detail. Before that, let us, first, provide some remarks
concerning the unknown channel information that can be
described either in a non-parametric or a parametric form. It is
noted, here, that both forms will be actually employed during
the description of the channel estimation problem.

In the non-parametric case, the estimation of the channel
matrix Hp(t) ∈ CN×N given the vector yp(t), requires the
estimation of N2 unknowns given N measurements which
leads to an under-determined problem like minHp(t) ∥yp(t)−
Hp(t)sp∥22. To improve upon this, the inherent low-rank prop-
erty of the channel matrix Hp(t) [9] can be further exploited
as

min
Hp(t)

∥Hp(t)∥∗ + ∥yp(t)−Hp(t)sp∥22, (3)

where the nuclear norm is defined as ∥X∥∗ ≜
∑

i σi(X) and
σi(X) denotes the i-th singular value of the matrix X.

Moreover, in the parametric case (see, e.g., (2)), the pa-
rameters g(t), v(t) and θ(t) need to be estimated. Note that
ϕ(t) is assumed known in this work and its estimation will be
investigated in the future. As observed, θ(t) and v(t) make the
problem non-linear and sensitive to (even small) measurement
noise. Thus, in order to reach a solution, an appropriate starting
point is required to guarantee convergence. In order to acquire
such an appropriate starting point, it can be observed that the
AoA θ(t) is related to the UAV’s velocity as shown in Fig. 1.
Note that the velocity can be provided by the UAV’s control
module.

A. Problem Formulation

We consider a 2D-plane where the UAV moves, which
serves as the common reference system (O, i⃗, j⃗) of the base-
station and the UAV. For simplicity, we assume that the ULA
is in parallel with the i⃗ axis. The control module of the UAV
provides an estimate of its velocity v⃗(t) with respect to the
common reference system with the base-station. As shown in
Fig. 1, the two components of the velocity can be written as

v⃗x(t) = |v⃗(t)| cos θ(t)⃗i (4)

v⃗y(t) = |v⃗(t)| sin θ(t)⃗j. (5)

Let us define the state vector x(t) ≜ [|v⃗x(t)|, |v⃗y(t)|]T, then,
for each time instance, the input from the control unit can be
expressed as:

x(t) =

[
cos θ(t)
sin θ(t)

]
v(t) +wctrl(t), (6)

where wctrl(t) is an AWGN vector with [wctrl(t)]i ∼
N (0, σ2

ctrl) and v(t) = |v⃗(t)|.
To solve the problem of channel estimation, we propose

a hybrid technique of parametric/non-parametric estimation,
which exploits the vehicle’s velocity measurements provided
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by control module. Specifically, we formulate the following
problem

min
α,θ,Hp

τ∥Hp∥∗ + ∥yp −Hpsp∥2F + ∥x−
[

cos θ
sin θ

]
v∥22

subject to Hp = αe−j2πvfc/caRX(θ, p)a
H
TX, (7)

where we have dropped the time index for brevity. Parameter
τ > 0 provides a weighting between the terms of the cost
function, i.e., the low-rank property and the reconstruction
accuracy. Note that the adopted channel model (including time
variations and the beam squint) may change between consec-
utive OFDM symbols and, thus, (7) is limited in utilising only
a single OFDM symbol.

B. ADMM-based solution

We choose to solve (7) using ADMM, due to its conver-
gence properties. To do so, we introduce the auxiliary variable
A ∈ CN×N

min
α,θ,H,A

τ∥H∥∗ + ∥y −As∥22 + ∥A− αaRX(θ, p)a
H
TX∥2F

+ κ∥x− bv∥22 subject to H = A, (8)

where α ≜ c(t)e−j2πv(t)fc/c, b ≜
[
cos θ sin θ

]T
, and

κ is the weighting factor which reflects the accuracy of the
input provided by the control module. Also note that, we have
dropped the p index to simplify notations.

The augmented Lagrangian function is expressed as

Lρ =τ∥H∥∗ + ∥y −As∥22 + ∥A− αaRX(θ, p)a
H
TX∥2F

+ κ∥x− bv∥22 + ZH(H−A) +
ρ

2
∥H−A∥2, (9)

where ρ > 0 is the dual update step length and Z ∈ CN×N is
the dual variable.

Following the ADMM methodology, at the (ℓ)-th ADMM
algorithmic iteration, with ℓ = 1, 2, . . ., the following separate
sub-problems have to be solved:{

X (ℓ+1) = argmin
X

Lρ

}
X∈{H,A,θ,α}

(10)

Z(ℓ+1) = Z(ℓ) + ρ(H(ℓ+1) −A(ℓ+1)), (11)

where Z ∈ CN×N is the dual variable, while Z(1) = A(1) =
0.

To solve over H, we remove from Lρ the terms which are
not affected by H, thus, we end up with the minimisation of

min
H

τ∥H∥∗ + (Z(ℓ))H(H−A(ℓ)) +
ρ

2
∥H−A(ℓ)∥2, (12)

which by completing the square, i.e., adding the term
√
2√
ρZ,

we construct the following optimisation problem:

min
H

τ∥H∥∗ +
2

ρ
∥H−

(
A(ℓ) − ρ

2
Z(ℓ)

)
∥2, (13)

which is a strictly convex problem and can be solved with the
Singular Value Thresholding (SVT) on the matrix A(ℓ)− ρ

2Z
(ℓ)

[18], i.e., H(ℓ+1) = SVTτ

(
A(ℓ) − ρ

2Z
(ℓ)

)
.

To solve over A, we remove from Lρ the terms which are
not affected by A, we end up with the minimisation of,

min
A

∥y −As∥22 + ∥A− α(ℓ)aRX(θ
(ℓ), p)aH

TX∥2F

+ trace
(
ZH(H(ℓ+1) −A)

)
+

ρ

2
∥H(ℓ+1) −A∥2F ,

which gives the closed-form solution A(ℓ+1) = ΦΨ−1, where

Φ ≜ 2ysH + Z(ℓ) + ρH(ℓ+1) + 2α(ℓ)aRX(θ
(ℓ), p)aH

TX,
(14)

and Ψ ≜ 2ssH + (ρ+ 2)I. (15)

To solve over the scalar parameter α, we end up with
the following minimisation problem, which has a closed-form
solution:

min
α

∥y − αA(ℓ+1)s∥2F ⇒ α =
trace(yHΩ(ℓ)s)

trace((Ω(ℓ)s)HΩ(ℓ)s)
, (16)

where Ω(ℓ) ≜ aRX(θ
(ℓ), p)aH

TX.
Finally, to solve over θ, the initial problem minθ Lp can be

equivalently written as:

min
θ

∥y − α(ℓ+1)aRX(θ, p)a
H
TXs∥2F + κ∥x− bv∥22, (17)

where the cost function is non-linear with respect to θ, and
it does not have a closed-form solution. Thus, we employ a
Gradient Descent (GD) approach,

θ(ℓ) = θ(ℓ) − γ
∂L
∂θ

, (18)

where γ is the predefined GD step size. The partial derivative
is given by:

∂L
∂θ

= tr

{(
∂Ω

∂θ

)H
∂L
∂Ω

}
+ tr

{(
∂b

∂θ

)H
∂L
∂b

}
(19)

= −2 · tr
{
(α∗)(ℓ+1) ((1N ⊗ e) ◦Ω)

H
(y − α(ℓ+1)Ωs)sH

}
− 2 · κ · tr

{
(x− bv)

[
− sin θ cos θ

]}
, (20)

where Ω ≜ aRX(θ, p)a
H
TX, the n-th element of vector e ∈

CN×1 is given by [e]n = −jπ(n− 1)(1+ p∆f), while 1N is
an 1×N vector of ones. To reduce the overall computational
complexity, for each ℓ ADMM iteration, we perform just one
GD step, with γ the pre-defined step-size.

C. Complexity analysis

The complexity of the Algorithm 1 can be estimated con-
sidering each sub-problem. Thus, SVT algorithm in line 3 has
complexity of the order O(N3); line 4 requires the inversion
of matrix Ψ with complexity order O(N3); line 5 requires
several matrix-vector multiplications, with overall complexity
O(N2); lines 6-7 requires the execution of the trace function
of (20), with complexity O(N2).

It is worth noting that, the inversion of the matrix Ψ can be
efficiently derived using the Sherman-Morrison formula, i.e.,

Ψ−1 =
1

ρ+ 2
IN +

1

2

ssH

(ρ+ 2)2 + (ρ+ 2)sHs
, (21)

with O(N2) complexity order.
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Algorithm 1 Proposed Channel Estimation
Input: y, s,x
Output: α(Imax), θ(Imax), H(Imax)

1: Z(1) = A(1) = 0
2: for ℓ = 1, 2, . . . , Imax do
3: H(ℓ+1) = SVTτ

(
A(ℓ) − ρ

2Z
(ℓ)

)
4: Compute A(ℓ+1) = ΦΨ−1 using (14) and (15)
5: Compute α(ℓ+1) using (16)
6: Compute the gradient ∂L

∂θ from (20)
7: θ(ℓ) = θ(ℓ−1) − γ ∂L

∂θ
8: end for

IV. SIMULATION RESULTS

To evaluate the proposed algorithm, we employ the mean-
square-error (MSE), weighted over a number R of Monte-
Carlo (MC) realisations. The MSE of the channel matrix
estimation is defined as:

MSE ≜
R∑

r=1

∥Ĥ−H∥2F
∥H∥2F

,

where Ĥ is the estimated channel matrix. We consider the
following techniques:
(a) low-rank minimisation using CVX to solve (3), which

serves as the baseline non-parametric technique,
(b) parametric estimator employing a coordinate descent ap-

proach where α and θ are estimated using (16) and (20),
over Imax number of iterations,

(c) a hybrid parametric/non-parametric approach, with is
based on Algorithm 1 with κ = 0,

(d) the proposed technique described in Algorithm 1.
Before we proceed, let us outline the precise values of

the parameters that have been used in the simulations. The
bandwidth of the transmitting channel was set to W = 1GHz,
the carrier frequency to fc = 90GHz, the spacing of adjacent
antenna elements was set to d = λ/2, where λ = fc

c . The
ADMM weighting factor was set to τ = 10−3, the control
module’s input weighting factor to κ = 10, the ADMM dual
variable update step size to ρ = 10−4, the Gradient Descent
(GD) step size γ = 10−4, and the maximum number of
iterations was set to Imax = 3 · 103.

Let us first evaluate the co-design approach for the commu-
nication and the control modules, by assessing the convergence
of Algorithm 1, for κ = 0 and for κ = 10 , namely the
hybrid parametric/non-parametric algorithm and the proposed
Algorithm 1. Let us first examine the MSE for each ADMM
iteration ℓ for the parameters θ(ℓ) and α(ℓ). To obtain a reliable
estimate, we have averaged the results over R Monte Carlo
(MC) realizations. The MSE plots in Fig. 2 provide insight
into the performance of the algorithms as they iterate towards
convergence.

The optimal value for the κ parameter was experimentally
determined over a range of κ ∈ [0, 20]. Based on the findings
presented in Fig. 3, Algorithm 1 for values κ ≥ 10 has similar
MSE performance.
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Algorithm 1 with =10 (Exploiting input from the control module)
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Fig. 2. Mean square error (MSE) for parameter estimation over the ADMM
iterations, for N = 16, SNR= 30dB for communication and control
measurements, and ρ = 10−4.
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Fig. 3. Searching for the optimal range of κ. Mean square error (MSE) over
different values of κ, for SNRcom = SNRctrl = 30dB for communication and
control measurements.

In Figs. 4, the performance of the algorithms is evaluated by
computing the MSE over different signal-to-noise ratio (SNR)
values, where SNR is defined separately for the measurements
of the communications module, SNRcom ≜ 1

σ2
com

, and for
the measurements of the control module, SNRctrl ≜ 1

σ2
ctrl

.
Specifically, we increase the variance of AWGN for only one
module, while keeping the variance of the other module at
10−3, to test the robustness of the algorithms in the presence
of different noise levels. As shown in Fig. 4, the low-rank ap-
proach fails to converge, indicating that the problem is severely
under-determined. On the other hand, the parametric technique
exhibits acceptable performance. The hybrid parametric/non-
parametric approach (Algorithm 1 with κ = 0) performs
similarly to the parametric approach. However, the proposed
Algorithm 1, with κ = 10, outperforms all other methods,
achieving significantly better MSE over all SNR values.
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Fig. 4. Mean square error (MSE) over signal-to-noise ratio (SNR), for N =
16.
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Fig. 5. Normalised mean square error (NMSE) over the antenna array
size N , for SNRcom = SNRctrl = 30dB for communication and control
measurements.

Figure 5 displays the MSE as a function of the antenna
array size N . As N increases, we observe that the MSE
also increases for all techniques. This can be attributed to the
corresponding increase in the number of unknown parameters.
Notably, our proposed Algorithm 1 demonstrates lower MSE
than the other techniques.

V. CONCLUSION

The problem of channel estimation is studied in a point-to-
point transmission between a UAV and a ground base station
that both employ multiple antennas. By adopting a time-
varying channel model in the mmWave frequency range that
captures the so-called beam squint effect, the proposed channel
estimation technique appropriately incorporates information
about the velocity of the UAV, which is provided by the
latter’s control module. The adopted problem formulation
considers the unknown channel in both a parametric and a non-

parametric form and exploits the inherent low-rank property
of the channel matrix. The solution is attained via ADMM and
its efficacy is demonstrated via simulations.
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