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Abstract—This work studies multiple-antenna wireless com-
munication systems based on super-resolution arrays (SRAs). We
consider the uplink of a multiple-antenna system in which users
communicate with a multiple-antenna base station equipped with
SRAs. In particular, we develop linear minimum mean-square
error (MMSE) receive filters along with linear and successive
interference cancellation receivers for processing signals with the
difference co-array originating from the SRAs. We then derive
analytical expressions to assess the achievable sum-rates asso-
ciated with the proposed multiple-antenna systems with SRAs.
Simulations show that the proposed multiple-antenna systems
with SRAs outperform existing systems with standard arrays that
have a larger number of antenna elements.

Index Terms—MIMO, Super-resolution, Sparse arrays,
Multiple-antenna.

I. INTRODUCTION

In the last decade, multiple-antenna technology has attracted

the interest of researchers dedicated to the investigation of

fifth generation (5G) mobile networks due to its substantial

improvement in the capacity of wireless systems and networks.

In the specific case of the multiple access channel, multiple-

antenna systems employ a number of physical antennas at the

base station (BS), which is often much larger than that of the

total number of users. However, the higher spectral efficiency

and resolution resulting from this excess of antennas comes at

the expense of physical space, coupling effects [3], [4] among

antenna elements and energy dissipation [8]. Among some

innovative solutions proposed to overcome these drawbacks

are coarse quantization [9], which provides energy savings.

Another is the use of sparse or super-resolution arrays (SRAs)

in the BS whose large degrees of freedom can be obtained by

the virtual expansion of the number of physical sensors.

The essential feature that allows one to obtain more sen-

sors than the physical ones leads to more compact antenna

arrays, reduced electromagnetic coupling [1], [2] effects and

significant energy savings. It is known that among the known

types of sparse arrays such as nested, co-prime, minimum

redundancy (MRAs) and minimum hole (MHAs) only the

first and the second provide simple closed-form expressions

for the array geometry and their sensor locations must be

found from tabulated entries. Despite the co-prime arrays yield

virtual ULAs consisting of smaller number of sensors than

nested arrays and the MRA, they result in useful virtual ULAs.

Therefore, it is desirable to take advantage of the properties

of the mathematical properties common to both in order to

formulate a unified approach for exploiting the benefits of their

unequal spacing and virtual increase of sensors in multiple-

antenna systems to increase achievable sum rates and accuracy.

Previous works [5] studied nested arrays technique in a massive

multi-input multi-output (MIMO) heterogeneous network and

the problem of joint user association and interference nulling
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scheduling to maximize the sum rate of users of small and

macro-cells, investigated its channel estimation [6] for massive

MIMO in 2-D and extended to 3-D by [7]. However, neither

of them focus on the possibility of unifying the processing of

sparse arrays to apply them to MIMO systems.

In this work, we investigate the uplink of multiuser MIMO

systems based on SRAs and develop receivers for processing

signals with the difference co-array from the SRAs. In par-

ticular, we consider co-prime and two level nested arrays, in

a single procedure that can be applied to multiuser MIMO

systems from the point of view of the properties of the similar

virtual ULAs obtained by preprocessing each one. We adopt

a tailored geometry-based stochastic model [10], [15], [17],

[18], [19] that preserves the structure of the steering vectors

characterized by non-uniform delays, which is a sine qua non

condition [11], [13] to obtain increased number of virtual

sensors with these methods. This is provided by assuming no

scattering for the propagation inside the single-cell and also

that each path is associated to its user and its respective steering

vector. We then derive linear minimum mean-square error

(MMSE) receivers for processing signals with the difference

co-array with super resolution. The performance appraisal

of the proposed super resolution multiple-antenna processing

through longstanding metrics shows that substantial gains can

be achieved in terms of savings in the number of antennas

and its resulting reduction of energy consumption, increased

achievable sum-rates and improved bit error rate (BER), which

encourages further research in this field.

This paper is structured as follows. Section II describes the

system model and background for understanding the proposed

super-resolution processing. Section III presents the proposed

super-resolution multiple-antenna processing. Section IV for-

mulates the proposed MMSE receiver, including its result-

ing Successive Interference Cancellation form, for Two-level

Nested Arrays (TLNA) and Co-prime arrays (CPA), whereas

Section V analyzes aspects of the sum-rate performance of the

proposed super-resolution multiple-antenna processing Section

VI presents and discusses numerical results whereas the con-

clusions are drawn in Section VII.

II. DEFINITIONS AND MULTIPLE-ANTENNA SYSTEM

MODEL

In this section, we review some basic on sparse arrays

to help the understanding of the subsequent material and

then introduce the multiple-antenna system model. We assume

that the multiple-antenna system model under consideration

employs a sparse antenna array at the base station (BS).

A. Definitions

Definition 2.1. The difference coarray set [11]represented by

D is a set associated with the sensors’ positions S through

D ,
{
n1 − n2 | (n1,n2) ∈ S2

}
(1)
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Definition 2.2. The number of Degrees of Freedom [11], de-

noted by DoF , of a geometry specified by S is the cardinality

of its difference coarray set, as follows:

DoF , D (2)

Definition 2.3. A two-level nested array [11]is a sparse array

consisting of the union of the sensors of two ULAs. The inner

Sin presents M1 sensors and the external Sou possesses M2

sensors. Their locations obey the criteria:

Sin = {md ,m = 1 , 2 , . . .M1}
Sou = {n (M + 1 ) d ,n = 1 , 2 , . . .M2} (3)

For M1 = M2 = M
2 , the resulting number of physical sensors

is even and yields M 2−2
2 +M DoFs.

Definition 2.4. A coprime pair of arrays [13] is a sparse

array with the sensors of two ULAs. The first one containing

F sensors with intersensor spacing Qd and the other with

2Q − 1 sensors and intersensor gaps Fd . The locations of

their F + 2Q − 1 sensors are driven by

S = {Qfd , 0 ≤ f ≤ F − 1} ∪ {Fqd , 1 ≤ q ≤ 2Q − 1}
(4)

A coprime pair of arrays provides up to 2QF + 1 DoFs [13]

using solely F + 2Q − 1 physical sensors.

B. System Model

Let us take into account the uplink of a single-cell MIMO

system with a BS equipped with a sparse array composed

by M physical sensors, possibly a TLNA or CPA, on which

the data symbols {sk} ∈ {s1, s2, . . . , si=K} included in radio

frequency (RF) signals from K single-antenna users, impinge

on, as depicted in Fig.1. The environment is assumed to be

free of scatterers and, in contrast to massive MIMO settings,

the number of physical sensors M is assumed to be not much

greater than the number of received users K. It is also assumed

that all users transmit their data at the same time.

Fig. 1. Uplink of a single-cell massive MIMO using sparse arrays

The received data vector x (t) ∈ CM×1 at the BS is

expressed by

x (t) = Hs (t) + z (t) , t = 1 , 2 , · · ·T snapshots (5)

where x (t) ∈ CM×1 denotes the discrete-time received data

vector and z (t) is the noise vector drawn from CN
(
0, σ2

nIM
)

and uncorrelated from the signal. The discrete-time signal

vector s (t) ∈ CK×1 contains the transmitted symbols. The

channel matrix H = [h1,h2, . . . ,hK ] ∈ CM×K is estimated

at the receiverIn [15], [16] a finite multipath channel model is

devised for poor scattering environments, where the number of

multipaths is much less than the number of BS antennas and

users. In those works the channel vector hk ∈ CM×1 between

the kth user and the BS is represented by

hk =
βk√
P

P∑

p=1

a (θp) gkp (6)

where gkp is the random propagation gain coefficient between

the kth user and the BS related to each path p = p1, p2, . . . ,P .

In that studies gkp is modeled as a Rayleigh fading coefficient

with zero mean and unit variance, i.e., gkp ∼ NC (0, 1).
Furthermore, the expression (6) is simplified by the assumption

that the path loss coefficient βk between the kth user and BS

for all users is the same and normalized to unity. The steering

vector a (θp) characterizes the angle measured between the

direction of motion of the plane wave front and a line drawn

perpendicular to the array. The variable θp ∈
[
−π

2 ,
π
2

]
denotes

the angle of arrival corresponding to the pth path, d stands for

the sensors spacing and λ is the wavelength. However, that

model assumes a uniform linear array (ULA) at BS and poor

scattering, which results in possible multipaths.

Differently from the mentioned studies, the proposed model

assumes that there is no scattering, which means that there is

only one path between the kth user and the array. Thus, we can

tailor (6) to the proposed model so that each path is associated

to its user and its respective steering vector, similarly to line-

of-sight propagation. Following this reasoning, it is possible to

express the channel vector hk as follows:

hk = gk a (θk ) (7)

where gk ∼ NC (0, 1) and a (θk ) is the steering vector that

describes the Direction of Arrival (DOA) for each specific

sparse array and user.

It is known that sparse arrays can resolve O
(
M 2

)
signals

as a result of the expanded difference coarrays obtained from

differences of the distances between their sensors and the

incidence of those differences. Nevertheless, some of the

known subtypes of this class of arrays like MRA and MHA

neither present closed forms nor even have a simple formation

rule for the design of the set containing the sensors’ positions

S . Despite these drawbacks, it is possible to devise a method

to be applied to TLNA and CPA, so that we can assess the

theoretical performance of their class of arrays when applied

to multiple-antenna communications.

III. PROPOSED SUPER-RESOLUTION MULTIPLE-ANTENNA

PROCESSING

We start the exposition of the proposed super-resolution

multiple-antenna processing (PSRMAP) method by taking the

expectation of the outer product of the received signal vector

(5), to obtain its covariance matrix Rx ∈ CM×M :

Rx = E
{
x (t) xH (t)

}
=

K∑

k=1

σ2
k

(
h (θk) hH (θk)

)
+ σ2

nI

(8)

from which we obtain a vector with increased dimension

v = vec (Rx) = (H∗ ⊙H)p+ σ2
n
~1n, ∈ CM2

(9)
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where ⊙ denotes the Khatri-Rao product, p =
[
σ2
1 , σ

2
2 , . . . , σ

2
K

]T
and ~1n =

[
eT1 , e

T
2 , . . . , e

T
M

]T
stands

for a column vector of all zeros except a 1 in the ith position.

Both TLNA and CPA present DoF that allow the formulation

of convenient non-negative definite matrices (NND), which

can be combined with subspace methods to estimate a number

of signals greater than the number of their respective receive

physical sensors. In particular, a method like Multiple Signal

Classification (MUSIC) combined with a TLNA with an even

number of physical sensors can estimate up to M 2

4 + M
2 − 1,

signals. If TLNA is replaced by CPA, the estimation can

reach FQ signals.

The vector v in (9) obtained by vectorization of the co-

variance matrix of the received signal Rx contains redun-

dant information in the form of some elements that appear

more than once. We can remove the repeated entries after

their first appearance and arrange them so that the ith row

coincides with the sensor situated at
(

−M 2

4 + −M
2 + i

)

d and

(−2FQ − 1 + i) d for TLNA and CPA, respectively.

The reshaped vectors obtained after the removal of these

redundancies can be expressed for TLNA and CPA respectively

as follows:

vt,c = Bt,c p+ et,c (10)

where the augmented array manifolds Bt =
[qt (θ1) ,qt (θ2) , . . . ,qt (θK)] and Bc =
[qc (θ1) ,qc (θ2) , . . . ,qc (θK)] are described by their steering

vectors for TLNA and CPA, respectively, as

qt (θk) =|gk |2
[

e−j2π d

λc
(−M̄+1) sin θk , e−j2π d

λc
(−M̄+2) sin θk ,

. . . , e−j2π d

λc
(M̄−2) sin θk , e−j2π d

λc
(M̄−1) sin θk

]T

,

(11)

qc (θk) =|gk |2
[

e−j2π d

λc
(−M̂+1) sin θk , e−j2π d

λc
(−M̂+2) sin θk ,

. . . , e−j2π d

λc
(M̂−2) sin θk , e−j2π d

λc
(M̂−1) sin θk

]T

,

(12)

where k = 1, 2, . . . ,K , M̄ = M 2

4 + M
2 and M̂ = QF + 1.

The vectors et ∈ R(2M̄−1)×1 and ec ∈ R(2M̂−1)×1 con-

sist of all zeros, except for a 1 in the central position. In

comparison with x in (5), both vt and vc in (10) work as

if the signals received by a longer difference coarray whose

sensors positions are computed by the diverse values in the

set {~xi − ~xj | i ≥ 1, j ≤ M}, where ~xi stands for the position

vector of the ith sensor. The source signal vector p composed

by the powers σ2
k, k = 1, 2, . . . ,K of the truly existing sources

acts like coherent sources. This associated with the fact that the

difference coarrays are ULAs allow the application of spatial

smoothing to equations (10) to estimate full-rank covariance

matrices, which are also NND. The resulting smoothed matri-

ces obtained for TLNA [11], [12] and for CPA [13], [14] can

be expressed respectively as follows:

R̄tss =
1

M̄

M̄∑

i=1

vti v
H
ti =

1

M̄

[(
Bt1 Ωt B

H
t1

)
+ σ2

nIM̄
]2

(13)

R̂css =
1

M̂

M̂∑

i=1

vci v
H
ci =

1

M̂

[(
Bc1 Ωc B

H
c1

)
+ σ2

nIM̂

]2

(14)

where the vector vti is formed by the entries between the(
M̄ + 1− i

)
and the

(
2M̄ − i

)
rows of vt in (10) and Bt1

denotes an array manifold composed with the final M̄ rows of

Bt in (10). Similarly, vci is composed with the entries included

between the
(

2M̂ + 1− i
)

and the
(

2M̂ − i
)

rows of vt in

(10) and Bc1 stands for an array manifold composed by the

latest M̄ rows of Bc in (10). More specifically, covariance

matrices Ωt in (13) and Ωc in (14) respectively are expressed

as Ωt = Ωc = diag (p). Additionally, covariance matrices BH
t1

and BH
c1 are described by

BH
t1,B

H
c1 =









1 η1 · · · η
(γ)
1

1 η2 · · · η
(γ)
2

...
. . .

1 ηK · · · η
(γ)
K









(15)

where γ =
(
M̄ − 1

)
for BH

t1 and γ =
(

M̂ − 1
)

for BH
c1. The

matrices R̄t =
(
R̄tss

)1/2
, for TLNA, and R̄c =

(
R̄css

)1/2
,

for CPA, play a pivotal role in this work. Their augmented

sizes, which are results of preprocessed signals collected by

M and F + 2Q−1 sparse physical sensors, provide resolution

of up to M 2

4 + M
2 − 1 and QF signals, respectively.

IV. PROPOSED MMSE RECEIVERS

We can use the enlarged matrices R̄t and R̄c defined

previously to determine the expressions of the augmented data

vectors that give origin to them. Now, let us assume that our

system model is similar to that described in Subsection II-B,

except that our array is a ULA, composed with J |=M̄ ;M̂ in

(11) and (12) sensors, which is the same number of equivalent

sensors obtained at the end of the sparse (TLNA or CPA) array

preprocessing. It receives signals transmitted simultaneously

from the K single users assumed in Subsection II-B. Following

this interpretation, we have that the received data vector xU (t)
∈ CJ×1 at the BS would be expressed by

xU (t) = HU s (t) + z (t) , t = 1 , 2 , · · ·T snapshots (16)

where HU = [h1,h2, . . . ,hK ] ∈ CJ×K stands for the channel,

z (t) denotes the noise vector, assumed to be CN
(
0, σ2

nIJ
)
. It

is assumed to be uncorrelated from the signal. This long ULA

whose number of physical sensors is equal to the number of the

equivalent virtual sensors obtained by preprocessing CPA and

TLNA presents the following received data covariance matrix:

RU = E
{
xU (t) xH

U (t)
}
= HU Rss H

H
U + σ2

nIJ (17)

Now, we can rewrite R̄t for TLNA, and R̄c, for CPA, in

compact form, as follows:

R̄t,c =
(
R̄tss,css

)1/2
=

1√
J

[(
Bt1,c1 Ωt,c B

H
t1,c1

)
+ σ2

nIJ
]

= E
{
xa (t) xH

a (t)
}

(18)

where

xa (t) = J− 1

4 (Bt1,c1 sa (t) + za (t)) (19)
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By comparing (18) and (17), it can be noticed that sparse

augmented covariance matrices and similar corresponding

to equivalent elongated ULAs possess the same number of

equally spaced sensors, and for this reason, result in equiva-

lent channel vectors. They also present transmit uncorrelated

signals with different amplitudes but have the same SNR. As

a matter of fact, except for the factor 1√
J

in the enlarged

covariance expressions of the sparse arrays (18), expressions

(17) and (18) are similar. Now, let us consider the estimate of

a data symbol sa of the augmented discrete-time received data

vector xa(t) (5) using a suitable receive filter wa (t) whose

output is expressed by

ŝa (t) = wH
a (t) xa (t) , (20)

where 1 ≤ t ≤ T snapshots. Equation (19), can be rewritten

in terms of the desired signal and interferences, as follows:

xa (t) = J− 1

4



bksk (t) +
K∑

i=1; i 6=k

bisi (t) + zJ (t)





= J− 1

4 (bksk (t) + i (t) + zJ (t)) (21)

where the vectors bk, bi and zJ ∈ CJ×1 denote the channel

vectors corresponding to the desired user, the interferences,

both obtained from the augmented channel matrices in (15)

and the noise vector corresponding to TLNA or CPA. It

can be noticed that i (t) is equal to the summation of the

interferences combined with their respective channel vectors,

i.e.,
∑K

i=1
i 6=k

bisi (t). It can be shown that the Mean-Squared

Error (MSE) between the transmit symbol and its estimated

value [21] can be expressed by the following expectation:

E
{
|ŝ − s|2

}
= J− 1

2σ2
kw

H
a bkb

H
k wa − J− 1

4 σ2
kw

H
a bk

− J− 1

4 σ2
kb

H
k wa + σ2

k + J− 1

2wH
a Ri+nwa

(22)

where

Ri+n = E
{
i iH

}
+ E

{
i zH

}
|=0 + E

{
z iH

}
|=0 + E

{
z zH

}

(23)

is the equivalent interference-plus-noise covariance matrix,

where the cross terms indicated in (23) are equal to zero

matrices, according to the assumed uncorrelation between

signal and noise. By differentiating the MSE in (22) with

respect to the receive filter w and making it equal to 0, we can

compute the minimum MSE (MMSE) receive filter, as follows:

J− 1

2σ2
k

(
bk bH

k

)T
w∗

a − J− 1

4σ2
k b∗k + J− 1

2RT
i+n w∗

a = 0
(24)

A. Linear MMSE Receivers

In this subsection, we describe linear MMSE receivers with

super-resolution, whose column vectors of its matrix form

Wa = [wa1
,wa2

, . . . ,waK
] can be obtained by solving (24):

wai
= J

1

4 σ2
k

(
Ri+n + σ2

k bkb
H
k

)−1
bk ∈ CJ×1 (25)

Assuming perfect channel state information and that the

statistical knowledge of the noise is available, the problem

corresponds to estimating the transmitted symbol and then

performing detection, which can be extracted from the estimate

of the data symbol s̃a (t), which in turn can be expressed as

follows:

s̃a (t) = Slicer [ŝa (t)] (26)

where ŝa (t) is computed by (20).

B. Successive Interference Cancellation MMSE Receivers

The interference cancellation can be successfully combined

with an MMSE filter to better evaluate the performance

of sparse arrays in terms of uncoded BER. Specifically, in

the norm-based ordered successive interference cancellation

(OSIC) method [22], [23], which will be applied to our

PSRMAP it is assumed that the received signal concentration

of the ith transmitted signal is proportional to the norm

of its corresponding channel vector [Bt1](:,i). Thus, before

starting the procedure, the channel vectors are norm-ordered

decreasingly. Except for the first step, which preserves the

MMSE linear filter features, the subsequent refining steps

remove the preceding interference according the decreasing

order of the Euclidean norm of that vectors. The second step

of OSIC is provided by the 2nd row of the MMSE linear

filter applied to the first ’peeled’ received vector x̃1, which

is the difference between the received vector xa and the

product of the first norm-ordered channel vector J− 1

4bt1,c1(1)

and its corresponding signal estimate sa1
(t). The process for

estimating the ’peeled’ received vector starts with rewriting

(19) as follows

xa (t) = J− 1

4

(
bt1,c1(1) sa1

(t) + bt1,c1(2) sa2
(t)

+ . . .+ bt1,c1(K) saK
(t) + za (t)

)
(27)

and after that, taking the desired difference:

x̃1 = xa (t)− J− 1

4bt1,c1(1) sa1
(t)

= J− 1

4

(
bt1,c1(2) sa2

(t)

+ . . .+ bt1,c1(K) saK
(t) + za (t)

)
(28)

V. ANALYSIS

In this section, we analyze aspects of the performance of

the proposed super-resolution multiple-antenna processing. To

this end, we assume Gaussian signalling and make use of

suitable indicators such as Achievable Sum-Rate (ASRa).,
The computational complexity (CC a) demanded for carrying

out the proposed algorithm follows O
(
J 3

)
Floating Point

Operations per second (FLOPs) mainly concentrated in its

inversion matrix. The ASR can be defined [20], [15] as:

ASRa ≤
K∑

k=1

log2 (1 + SINRk) (29)

in which the received signal-to-interference plus noise ratio

of the kth user (SINRk), which is taken at the output of the

receiver is expressed by:

SINRk =
σ2
s

σ2
j + σ2

w

(30)

where σ2
s is the signal power, σ2

j is the interference power and

σ2
w is the noise power. Recall that as our system is composed

of a sole cell, the inter-cell interference is not considered. This

ratio can be obtained by identifying and taking suitable parts
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of the expression of the variance of the estimate of the data

symbol γ = E
{
ŝa (t) ŝ

H
a (t)

}
as follows:

γ = J− 1

2

(

signal power
︷ ︸︸ ︷

σ2
k|wH

k bk|2 +

intra-cell MUI
︷ ︸︸ ︷

K∑

i=1;i 6=k

σ2
i |wH

k bi|2 +
noise

︷ ︸︸ ︷

σ2
n‖wk‖2

)

(31)

where we have considered that the expected values of cross-

product terms are null as a result of the statistics assumed

in Subsection II-B. From (29), (30) and (31), we obtain the

expression of ASRa for the considered sparse arrays, namely,

TLNA and CPA, as follows:

ASRa ≤
K∑

k=1

log2

(

1 +
σ2
k|wH

k bk|2
∑K

i=1; i 6=k σ
2
i |wH

k bi|2 + σ2
n‖wk‖2

)

(32)

VI. NUMERICAL RESULTS

This section is intended to assess the performance of our

PSRMAP from the point of view of the ASR and BER. To

this end, we examine a scenario involving K = 8 single-

antenna users. The transmitted signals containing 10 2 symbols

under QPSK modulation experience a channel modeled as in

(7) before impinging on TLNA, CPA and ULA-based MU-

MIMO receivers. The first and the second arrays comprise

M ∈ {8, 16} non-uniformly spaced physical sensors whereas

ULA consists of M = 16 uniformly spaced physical sensors.

We set the number of independent trials to 10 3.

In Fig.2, we plot the ASR corresponding to K = 8 users

sending signals to a ULA comprising M = 16 physical

sensors. We can compare its ASR to that achieved by TLNA

and CPA consisting both of an smaller or equal amount of

sensors, i.e. M = 8 and M = 16. It can be noticed that the

smaller number of sensors for TLNA and CPA (M = 8) is just

enough to provide better performance than that achieved by a

ULA containing (M = 16) in all considered SNR range.

Fig.3 illustrates the performance of the uncoded BER for

TLNA, CPA and ULA under norm-ordered sucessive interfer-

ence cancellation applied to a MMSE receiver, as described

in Subsection IV-B. A comparison among the curves makes

clear that for TLNA and CPA with the same number of

physical sensors, the first yields better results in the SNR

range in question. Furthermore, the BER performance of a

ULA consisting of M = 16 is worse than that of a pair

{TLNA,CPA} comprised of M = 8, i.e, its half, and also

by the same pair consisting of the same number of sensors of

a ULA M = 16.
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Fig. 2. ASR for K = 8 single
users. M= no of physical sensors.
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Fig. 3. Uncoded BER for K = 8 single
users. M= no of physical sensors.

VII. CONCLUSIONS

We have proposed a sparse arrays processing common to

two-level nested and co-prime arrays that can be applied to

multiple-antenna systems in the light of the properties of

the similar virtual ULAs. It is assumed a geometry-based

stochastic model and no scattering inside a single-cell. The

proposed PSRMAP procedure resulted in substantial gains in

terms of achievable rates, bit error ratio and the energy savings

resulting from the much smaller number of sensor elements

which is required to achieve the same performance of a given

ULA. The obtained results motivate further studies in this area.
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