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Abstract—This work proposes a novel approach that jointly
designs user equipment (UE) association and power control in
a downlink user-centric cell-free massive multiple-input multiple-
output (CFmMIMO) network, where each access point (AP) only
serves only a set of its associated UEs for reducing the backhaul
signaling and computational complexity. Aiming at maximizing the
sum spectral efficiency (SE) of the UEs, we formulate a mixed-
integer nonconvex optimization problem with quality-of-service
and power constraints. Then, we propose a novel accelerated
projected gradient (APG) algorithm to obtain a suboptimal
solution to the formulated problem. The proposed algorithm is
suitable for large-scale CFmMIMO systems with low complexity.
Numerical results show that the 50%-likely SE of the proposed
method is up to about 2.8 fold higher than that of the heuristic
baseline scheme. The APG approach is confirmed to run much
faster than the successive convex approximation (SCA) algorithm
while obtaining a SE performance close to the SCA approach.

Index Terms—Cell-free massive MIMO, user association, power
control, accelerated projected gradient (APG)

I. INTRODUCTION

CFmMIMO has been considered as a promising solution
for future generations of communication systems due to its
potential to provide handover-free and uniformly good services
to all users [1], [2]. In a CFmMIMO system, a large number
of APs serve a large number of UEs in the same time and
frequency resources. Since CFmMIMO offers high macro-
diversity gains along with favorable propagation and channel
hardening, it can achieve very high coverage, spectral and
energy efficiencies with simplified resource allocation [3], [4].
However, canonical CFmMIMO requires all the APs to serve
all the UEs, which makes its implementation difficult in a large-
scale system.

To make CFmMIMO more scalable, user-centric CFmMIMO
is the most compatible architecture [5], [6]. In a user-centric
CFmMIMO system, each AP only needs to receive data and
process signals related to its associated UEs. Consequently, the
backhaul signaling load and signal processing complexity at
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each AP can be significantly reduced. User association or/and
power control optimization problems of CFmMIMO have been
widely discussed in previous literature [7]–[11]. However, no
current works have explored low-complexity approaches for
joint user association and power control in a large-scale user-
centric CFmMIMO system.

In [7], the authors derived the downlink power control
algorithm in a user-centric CFmMIMO system and adopted
the alternating optimization method to maximize the minimum
user’s signal to noise and interference ratio (SINR) or the
system sum-rate. In [8], the SCA was presented for the en-
ergy efficiency maximization with zero-forcing precoding. The
authors introduced the second-order Taylor approximation to
solve the pilot power control problem for CFmMIMO in [9].
In [10], the authors investigated the max-min fairness power
control problem based on the derived downlink achievable rate
expression of CFmMIMO and adopted the SCA approach to
address the problem. In [11], a user association method was
presented using the Hungarian algorithm to maximize the up-
link sum rate in the CFmMIMO system. Most of the mentioned
works focus on power control or user association. Moreover, the
above algorithms require substantial computational resources,
thus, making them less likely to be implemented in large-scale
CFmMIMO systems.

We herein consider the joint user association and power
control for the downlink user-centric CFmMIMO system with
the local partial protective zero-forcing (PPZF) processing. We
formulate a mixed-integer nonconvex problem for maximizing
the achievable sum SE. We, then, propose an APG algorithm
to solve the formulated problem with a suboptimal solution.
The APG approach has lower complexity than the conventional
SCA-based methods and is more suitable for large-scale user-
centric CFmMIMO systems. Numerical results confirm that the
proposed joint optimization method significantly improves the
SE compared to the heuristic approaches. Morever, the APG
algorithm offers a SE performance close to the SCA algorithm
while performing considerably faster than the SCA in large-
scale CFmMIMO systems.

II. SYSTEM MODEL

We consider a downlink CFmMIMO system, where M APs
serve K single-antenna UEs in the same frequency band using
time-division duplexing [3]. Each AP is connected to the central
processing units (CPUs) via backhaul links and is equipped
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with N antennas. Each coherence block includes two phases:
uplink training for channel estimation and downlink payload
data transmission.

A. Uplink Channel Estimation

In each coherence block of length τc symbols, all the UEs
send their pilots of length τp symbols to the APs simultane-
ously. We assume that the pilots are pairwisely orthogonal,
which requires τp ≥ K. Denote by gmk = (βmk)

1/2g̃mk ∈
CN×1 the channel from UE k to AP m, where m ∈ M ≜
{1, . . . ,M}, k ∈ K ≜ {1, . . . ,K}, βmk and g̃mk ∼ CN (0, IN )
represent the large-scale fading and small-scale fading coeffi-
cients, respectively. At AP m, gmk is estimated by using the
received pilot signals together with the minimum mean-square
error (MMSE) estimation technique. By following [3], we can
obtain the MMSE estimate of gmk as ĝmk which is distributed
according to CN (0, σ2

mkIN ), where σ2
mk =

τpρpβ
2
mk

τpρpβmk+1 and
ρp is the normalized pilot power at each UE. Let Ĝm ≜
[ĝm1, . . . , ĝmK ] be the estimate of the channel matrix between
all the UEs and AP m.

B. Downlink Data Transmission with PPZF Precoding

The APs transmit data to the UEs in the remaining (τc− τp)
symbols of each coherence block. In this work, the downlink
transmission includes two steps: (S1) precoding design at each
AP for all the UEs and (S2) joint UE association and power
control for optimizing the SE of the system.

1) Step (S1): Let sk, where E{|sk|2} = 1, be the data
symbol intended for UE k, where E{·} denotes the statistical
expectation. Since the local PPZF processing technique is
confirmed to provide a higher SE than the other processing
techniques, such as maximum-ratio transmission (MRT), local
full-pilot ZF (FZF), and local partial ZF [4], we assume that
each AP uses the PPZF processing technique for precoding the
downlink signals. The key idea of this technique is that each
AP suppresses only the interference that causes to the strongest
UEs, which have the largest channel gains, while tolerating
the interference that causes to the weakest UEs. To this end,
AP m with PPZF first categorizes the subsets of strong and
weak UEs as Sm ⊂ K and Wm ⊂ K, respectively. Here,
Sm ∩Wm = ∅ and | Sm | + |Wm | = K, where | S | is the
cardinality of set S. The strategy for choosing these subsets
is discussed later in Section IV. Then, each AP m uses the
local PZF technique to precode signals for UEs in Sm, and
uses a protective MRT (PMRT) technique to serve the UEs in
Wm. Specifically, the signal transmitted by AP m is given by
xPPZF
m =

∑
k∈Sm

√
ρdθmk u

PZF
mk sk +

∑
ℓ∈Wm

√
ρdθmℓ u

PMRT
mℓ sℓ,

where uPZF
mk ∈ CN×1 and uPMRT

mk ∈ CN×1 are the precoding
vectors with E{∥uPZF

mk ∥2} = E{∥uPMRT
mk ∥2} = 1, while ρd is

the maximum normalized transmit power at each AP and
θmk ≥ 0,∀m, k, (1)

are power control coefficients. The transmitted power at AP m
is constrained by E{|xPPZF

m |2} ≤ ρd which is equivalent to∑
k∈K

θ2mk ≤ 1,∀m. (2)

Let ĜSm ∈ CN×|Sm | be the matrix formed by stacking
the estimated channels of all UEs in Sm of AP m. Denote
by jmk ∈ {1, . . . , | Sm |} the index of UE k in Sm. Then,
we have ĜSm

ejmk
= ĝmk, where ejmk

is the jmk-th col-
umn of I| Sm |. We note that the set Sm is independent of
the user association. The precoding vector uPZF

mk is defined
as uPZF

mk =
√
σ2
mk(N − |Sm |)ĜSm

(Ĝ
H

Sm
ĜSm

)−1 ejmk
[4],

which requires N > | Sm |, while (·)H stands for the Hermitian
transpose. To fully protect the strongest UEs in Sm from
the interference from the weakest UEs in Wm, the PPZF
technique forces the MRT precoded signals of UEs in Wm

to take place in the orthogonal complement of ĜSm
. Let

Bm = IM −ĜSm(Ĝ
H

Sm
ĜSm)−1Ĝ

H

Sm
be the projection matrix

onto the orthogonal complement of ĜSm
. Then, the PMRT

precoding vector for UE ℓ at AP m is uPMRT
mℓ = Bm Ĝm eℓ√

σ2
mℓ(N−|Sm |)

,

where eℓ is the ℓ-th column of IM . Here, ĝH
mk Bm = 0T if

k ∈ Sm.
At UE k, the received signal is

yk =
∑

m∈M
gH
mk xm +nk, (3)

where nk ∼ CN (0, 1) is the additive noise. Using the use-and-
then-forget capacity-bounding technique, the achievable SE of
the system is given by [4, Eq. (33)]

SEk(θ) =
τc − τp

τc
log2

(
1 +

(Uk(θ))
2

Vk(θ)

)
,∀k, (4)

where Vk(θ) ≜
∑

ℓ∈K
∑

m∈Mρdθ
2
mℓ(βmk − δmkσ

2
mk) +

1, Uk(θ) ≜
∑

m∈M
√
ρd(N − |Sm |)σ2

mkθmk, θ ≜
[θT

1 , . . . ,θ
T
M ]T ,θm ≜ [θm1, . . . , θmK ]T , δmk = 1 if AP m

use PZF for UE k ∈ Sm, and δmk = 0 if AP m use PMRT for
UE k ∈ Wm. Note that (·)T denotes the transpose. Here, the
SE of each UE needs to be larger than a threshold SEQoS

SEk(θ) ≥ SEQoS,∀k. (5)
2) Step (S2): In a practical large-scale CFmMIMO system

with a large value of K, the backhaul signal load to each AP
should be limited, and the number of UEs served by each AP
should be restricted by a number smaller than K to reduce the
complexity at each AP [5]. This also means that each UE is
only served by a set of its associated APs instead of all the
APs. The association of UE k and AP m is defined as

amk ≜

{
1, if UE k associates with AP m

0, otherwise
,∀m, k. (6)

We have
(θ2mk = 0,∀k, if amk = 0), ∀m, (7)

to guarantee that if AP m does not associate with UE k,
the transmit power ρdθ

2
mk towards UE k is zero. Note that

since Steps (S1) and (S2) are performed separately, the UE
association in this step does not affect the precoding signals in
Step (S1) and the mathematical structure of SEk in (4). The UE
association variable amk only affects SEk via power θ2mk and
(7). Here, we have∑

k∈K

amk SEk(θ) ≤ Cmax,m,∀m, (8)∑
k∈K

amk ≤ K̂m,∀m, (9)
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∑
m∈M

amk ≥ 1,∀k, (10)

to guarantee that the backhaul load at each AP m is below
a threshold Cmax,m, the maximum number of UEs served by
each AP m is K̂m, and each UE is served by at least one AP.

III. PROBLEM FORMULATION AND SOLUTION

A. Problem Formulation

In this section, we aim at optimizing UE association a ≜
{amk},∀m, k, and the power control coefficients θ to maximize
the sum SE. Specifically, we formulate an optimization problem
as follows:

max
a,θ

∑
k∈K

SEk(θ) (11)

s.t. (1), (2), (5) − (10).
Note that (11) is a mixed-integer optimization problem with
highly nonconvex constraints, whose solution is challenging to
find. Instead, we aim to design algorithms that are suitable for
practical implementation.

First, to deal with the binary constraint (6), we see that x ∈
{0, 1} ⇔ x ∈ [0, 1]&x − x2 ≤ 0 [12]. Therefore, (6) can be
replaced by

Q(a) ≜
∑
k∈K

∑
m∈M

(amk − a2mk) ≤ 0, (12)

0 ≤ amk,∀m, k, (13)
amk ≤ 1,∀m, k. (14)

In the light of (2), we replace the constraint (7) by
θ2mk ≤ amk,∀m, k. (15)

Problem (11) is now equivalent to
min
x∈F̃

−
∑
k∈K

SEk(θ), (16)

where x ≜ {a,θ}, F̃ ≜ {(1), (2), (5), (8) − (10), (12) − (15)}
is a feasible set. Problem (16) can be solved using SCA-
based algorithms [13].1 However, such approaches have high
complexity and, importantly, a slow running time when the
size of the problem is large (i.e., MK ≥ 1000). Therefore,
we propose a low-complexity approach to solve the problem
(16) using APG techniques [14], [15].

B. APG Approach

We first let z2mk ≜ amk,∀m, k and
0 ≤ zmk ≤ 1,∀m, k. (17)

Then, (5), (8), (10), (12) and (15) can be replaced by
Q1(z) ≜

∑
k∈K

∑
m∈M

(z2mk − z4mk) ≤ 0, (18)

Q2(θ)≜
∑
k∈K

[
max

(
0, SEQoS − SEk(θ)

)]2
≤ 0, (19)

Q3(θ, z) ≜
∑
k∈K

([
max

(
0, 1−

∑
m∈M

z2mk

)]2
+

∑
m∈M

[max(0, θ2mk−z2mk)]
2

)
≤ 0, (20)

1The details of the SCA algorithms to solve (16) are omitted due to lack of
space.

Algorithm 1 Solving problem (23) using the APG approach

1: Initialize: n=1, q(0)=0, q(1)=1, random v(0), v̄(0)∈Ĥ,
αv̄ > 0, αv > 0, ṽ(1) = v(1) = v(0), ζ ∈ [0, 1), b(1) = 1,
υ > 0, c(1) = f(v(1)), ∆ > 1

2: repeat
3: repeat
4: Update v̄(n) as (25) and ṽ(n+1) as (27)
5: if f(ṽ(n+1)) ≤ c(n) − ζ∥ṽ(n+1) − v̄(n)∥2 then
6: v(n+1) = ṽ(n+1)

7: else
8: Update v̂(n+1) as (30)
9: Update v(n+1) as (31)

10: end if
11: Update q(n+1) as (26)
12: Update b(n+1) as (28) and c(n+1) as (29)
13: Update n = n+ 1

14: until
∣∣ f(v(n))−f(v(n−10))

f(v(n))

∣∣≤ϵ or
∣∣h(θ(n))−h(θ(n−1))

h(θ(n))

∣∣≤ϵ

15: Increase χ = χ×∆
16: until convergence

Q4(θ, z) ≜
∑

m∈M

[
max

(
0,

∑
k∈K

z2mk SEk(θ)− Cmax,m

)]2
≤0.

(21)
Therefore, problem (16) is equivalent to

min
v

h(θ) ≜ −
∑
k∈K

SEk(θ) (22a)

s.t. (1), (2), (17) − (21) (22b)∑
k∈K

z2mk ≤ K̂m,∀m, (22c)

where (22c) follows (9), v≜ [θT, zT ]T , z ≜ [zT1 , . . . , z
T
M ]T ,

zm ≜ [zm1, . . . , zmK ]T . Let H ≜ {(1), (2), (17) − (21), (22c)}
is the feasible set of (22). We consider the following problem

min
v∈Ĥ

f(v), (23)

where Ĥ ≜ {(1), (2), (17), (22c)} is a convex feasible set of
(23), f(v)≜h(θ) +χ

[
µ1Q1(z)+µ2Q2(θ)+µ3Q3(θ, z)+µ4

Q4(θ, z)
]

is the Lagrangian of (22), µ1, µ2, µ3, µ4 are fixed and
positive weights, χ is the Lagrangian multiplier corresponding
to constraints (18)–(21).

Proposition 1. The values Q1,χ, Q2,χ, Q3,χ, Q4,χ of Q1, Q2,
Q3, Q4 at the solution of (23) corresponding to χ converge to
0 as χ → +∞. Also, problem (22) has strong duality, i.e.,

min
v∈H

−
∑
k∈K

SEk(θ) = sup
χ≥0

min
v∈Ĥ

f(v). (24)

Then, (23) is equivalent to (22) at the optimal solution χ∗ ≥ 0
of the sup-min problem in (24).

The proof of Proposition 1 follows [13], and hence, is omitted
due to lack of space. For practical implementation, it is accept-
able for Q1,χ/(MK), Q2,χ/K,Q3,χ/(MK), Q4,χ/M ≤ ε, for
some small ε with a sufficiently large value of χ.

The main steps for solving problem (23) are outlined in
Algorithm 1. Starting with a random point v(0) ∈ Ĥ, we
compute an extrapolated point for accelerating the convergence
of the algorithm as
v̄(n)=v(n)+ q(n−1)

q(n) (ṽ(n)−v(n))+ q(n−1)−1
q(n) (v(n)−v(n−1)), (25)
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where q(n) is an extrapolation parameter in iteration n and
computed recursively as

q(n+1) =
1 +

√
4(q(n))2 + 1

2
. (26)

From v̄(n), we move along the gradient of the function with a
dedicated step size αv̄. Then, the resulting point (v̄−αv̄∇f(v̄))
is projected onto the feasible set Ĥ to obtain

ṽ(n+1) = PĤ(v̄(n) − αv̄∇f(v̄(n))), (27)
where PĤ(y) is the operator of projecting y on Ĥ. Since
f(v) is not convex, f(ṽ(n+1)) may not improve the objec-
tive sequence, we accept v(n+1) = ṽ(n+1) if the objective
value f(ṽ(n+1)) is smaller than c(n) which is a relaxation
of f(v(n)) but not far from f(v(n)). Following [15], c(n) =∑κ

n=1 ζ(κ−n)f(v(n))∑κ
n=1 ζ(κ−n) , which is the weighted average of f(v(n)),

is chosen, where ζ ∈ [0, 1). In each iteration, c(n+1) can be
computed by

b(n+1) = ζb(n) + 1, (28)

c(n+1) =
ζb(n)c(n) + f(v(n))

b(n+1)
, (29)

where c(1) = f(v(1)) and b(1) = 1.
If f(ṽ(n+1)) ≤ c(n) − ζ∥ṽ(n+1) − v̄(n)∥2 does not hold,

additional correction steps are used to prevent this event, where
∥x ∥ is the Euclidean norm of x. Specifically, another point

v̂(n+1) = PĤ(v(n) −αv∇f(v(n))), (30)
is computed with a dedicated step size αv. Then, we update
v(n+1) by comparing the objective values at ṽ(n+1) and v̂(n+1)

as

v(n+1) ≜

{
ṽ(n+1), if f(ṽ(n+1)) ≤ f(v̂(n+1))

v̂(n+1), otherwise
. (31)

Since the feasible set Ĥ is bounded, it is true that ∇f(v) is
Lipschitz continuous with an existing value of L, i.e.,

∥∇f(x)−∇f(y)∥ ≤ L∥x−y ∥,∀x,y ∈ Ĥ. (32)
In our numerical results, αv̄ and αv are kept fixed as sufficiently
small values and still offer a convergence for the Algorithm 1.

In Algorithm 1, the projection in (27) and (30) is performed
by solving the following problem

PĤ(v) : min
v∈R2MK×1

∥v− r ∥2 (33)

s.t. (1), (2), (17), (22c),
for any given vector r = [rT1 , r

T
2 ]

T ∈ R2MK×1, where
r1 ≜ [rT1,1, . . . , r

T
1,M ]T , r1,m ≜ [r1,m1, . . . , r1,mK ]T , r2 ≜

[rT2,1, . . . , r
T
2,M ]T , r2,m ≜ [r2,m1, . . . , r2,mK ]T . Problem (33)

can be decomposed into two separate subproblems of optimiz-
ing θm and zm for each m as

min
θm∈RMK×1

∥θm − r1,m ∥2 (34)

s.t. ∥θm ∥2 ≤ 1,θm ≥ 0,

min
zm∈RMK×1

∥ zm − r2,m ∥2 (35)

s.t. ∥ zm ∥2 ≤ K̂m, zm ≥ 0, zm ≤ 1,
where the constraints in problems (34) and (35) follow (1), (2),
(17), (22c). The solution to the problem (34) is the projection
of a given point onto the intersection of a Euclidean ball and
the positive orthant, which have a closed-form as [14], [15]

θm =
1

max (1, ∥[r1,m]0+∥)
[r1,m]0+, (36)

where [x]0+ ≜ [max(0, x1), . . . ,max(0, xK)]T ,∀x ∈ RK×1.
The solution to problem (35) is the projection of a given point
onto the intersection of a Euclidean ball and a box, which can
be approximated by

zm =

[ √
K̂m

max
(√

K̂m, ∥[r2,m]0+∥
) [r2,m]0+

]
1−

, (37)

where [x]1− ≜ [min(1, x1), . . . ,min(1, xK)]T ,∀x ∈ RK×1.
Note that the solution (37) is not yet the optimal solution to
problem (35) but is close to this solution.

The values of ∂
∂θmk

f(v) and ∂
∂zmk

f(v) are computed by
∂

∂θmk
f(v) = −

∑
i∈K

∂

∂θmk
SEi(v) + χ

∂

∂θmk
Q̃(v), (38)

∂

∂zmk
f(v) = −

∑
i∈K

∂

∂zmk
SEi(v) + χ

∂

∂zmk
Q̃(v), (39)

where

∂

∂θmk
SEi(v)=

τc−τp
τc log 2

[ ∂
∂θmk

(Ui(v) + Vi(v))

(Ui(v) + Vi(v))
−

∂
∂θmk

Vi(v)

Vi(v)

]
,

(40)

∂

∂zmk
SEi(v)=

τc−τp
τc log 2

[ ∂
∂zmk

(Ui(v) + Vi(v))

(Ui(v) + Vi(v))
−

∂
∂zmk

Vi(v)

Vi(v)

]
.

(41)
Here, ∂

∂zmk
Ui(v) = 0, ∂

∂zmk
Vi(v) = 0,∀m, k, i,

∂

∂θmk
Ui(v) =


(∑

m∈M
√
ρd(N − |Sm |)σ2

mkθmk

)
×2×

√
ρd(N − |Sm |)σ2

mk, i = k

0, i ̸= k

, (42)

∂

∂θmk
Vi(v) =

{
2ρd(βmk − δmkσ

2
mk)θmk, i = k

2ρd(βmi − δmiσ
2
mi)θmk, i ̸= k

. (43)

From the definitions of Q1, Q2, Q3, Q4 in (18)–(21), we have
∂

∂θmk
Q̃(v) = µ34max(0, θ2mk − z2mk)θmk

− µ2

∑
i∈K

2max
(
0, SEQoS − SEi(θ)

) ∂

∂θmk
SEi(v) + µ4×

∑
i∈K

2max
(
0,
∑
i∈K

z2mi SEi(θ)−Cmax,m

)
z2mi

∂

∂θmk
SEi(v), (44)

∂

∂zmk
Q̃(v) = µ1(2zmk−4z3mk)−µ34max(0, θ2mk−z2mk)zmk

− µ34max
(
0, 1−

∑
m∈M

z2mk

)
zmk

+ µ44max
(
0,
∑
i∈K

z2mi SEi(θ)−Cmax,m

)
zmk SEk(v). (45)

In each iteration, the APG-based Algorithm 1 only requires
computing the gradient and projecting a point into the feasible
Ĥ with closed-form solutions, while the SCA requires solving
an optimization problem. Therefore, the complexity of each
iteration of Algorithm 1 is expected to be much lower than that
of the SCA approach for given the same large-scale system.

IV. NUMERICAL EXAMPLES

We consider a CFmMIMO network, where the APs and UEs
are randomly located in a square of 1× 1 km2. The distances
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Fig. 1. Comparison among the considered schemes (K = 40).

between adjacent APs are at least 50 m. We set N = 2, τc=200
samples, K̂m = K̂ = 15, Cmax,m = Cmax = 20 bit/s/Hz, ∀m.
The large-scale fading coefficients, βmk, are modeled in the
same manner as [16, Eqs. (37), (38)]. Let ρ̃d=1 W and ρ̃p=0.1
W be the maximum transmit power of the APs and uplink pilot
symbols, respectively. The maximum transmit powers ρd and
ρp are normalized by the noise power. Each AP m chooses its
subset Sm by selecting the UEs that contribute at least µ% of
the overall channel gain [4], while µ is adjusted to guarantee
N > | Sm |. In the algorithms, we set ∆ = 2, χ = 1, αv̄ =
αv = 10−4, ζ = 10−1, and υ = 10−2.

To evaluate the effectiveness of our proposed schemes, we
consider the following baseline schemes: 1) SCA: We transform
the problem (16) into a tractable form and jointly optimize
a and θ using the SCA algorithm; 2) Full UE association
(FULL): All the UEs are served by all the AP, without
constraints (8)–(10). We then apply our algorithm to optimize
the power control coefficients η; 3) Heuristic UE association
(HEU): First, each UE is associated to the AP that has the
strongest gains to guarantee (10). After this step, let κm be
the number of UEs that are associated to AP m. To guarantee
(9), each AP m fills up its set of K̂ UEs to serve by selecting
(K̂ − κm) UEs that have the strongest channel gains. Finally,
η is optimized similarly as FULL.

Note that the UE association approaches discussed in [7]–
[11] do not consider the maximum number of UEs served by
one AP in (9) as well as the maximum backhaul signaling load,
and hence, are not compared with our proposed approaches.

Figure 1 compares the SE of all the considered schemes. As
seen, in terms of 50%-likely performance (median value) of
sum SE, our proposed APG schemes significantly outperform
the heuristic scheme HEU. In particular, APG increases the
50%-likely sum SE by substantial amounts compared with that
of HEU, e.g., by up to 230% with M = 150 and 281% with
M = 300. Moreover, the sum SEs of SCA and APG are
close to that of FULL, i.e., up to 82% with M = 300. These
results show the significant advantage of joint optimization of
UE association and power control to improve the SE of user-
centric CFmMIMO systems. As also seen from Fig. 1, APG
can provide a sum SE that is close to that of SCA. The 50%-
likely sum SE of APG can approach up to 95% and 98% that of
SCA with M = 150 and M = 300, respectively. On the other

TABLE I

MK Average running time ratio of SCA over APG
6000 ≈ 12.63 fold
12000 ≈ 15.21 fold

hand, APG is implemented much faster than SCA as shown in
Table I. The average running time of APG is up to 15.21 fold
smaller than that of SCA when MK = 12000.

V. CONCLUSION

We have proposed a joint optimization approach of UE
association and power control for CFmMIMO. We formulated a
mixed-integer nonconvex optimization problem to maximize the
sum SE and presented a novel APG approach to solve the con-
sidered problem. Numerical results showed that the presented
APG algorithm can significantly increase the SE compared with
the heuristic approaches and obtain nearly the same SE as the
SCA method with considerably lower complexity.
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