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Abstract—We consider a multipair decode-and-forward
network-assisted full-duplex (NAFD) cell-free massive multiple-
input multiple-output relaying system, where access points (APs)
with a downlink (DL) mode serve destination nodes and those
with an uplink (UL) mode serve source nodes, at the same time.
Aiming at maximizing the sum of the spectral efficiency (SE) of all
the transmission pairs, we formulate a mixed-integer nonconvex
optimization problem to jointly design the AP mode assignment,
power control, and large-scale fading decoding coefficients.
This problem is subject to minimum per-pair SE requirements,
per-AP power control, and per-source-node power constraints.
By employing the successive convex approximation technique,
we propose an algorithm to obtain a stationary solution to the
formulated problem. Numerical results show that the NAFD
approach can increase 90%-likely per-pair SE of the considered
system by up to 63% compared with those of the traditional
half-duplex and heuristic baseline schemes, respectively.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (CFm-
MIMO) is considered as a promising solution for beyond 5G
wireless systems due to its potential to provide uniformly
good service to all users [1]. In a cell-free massive MIMO
system, a large number of access points (APs) simultaneously
serve a large number of users in the same frequency band. A
CFmMIMO system inherits the macro-diversity gain from the
distributed systems, and the favorable propagation and channel
hardening from colocated massive MIMO systems. Therefore,
CFmMIMO can offer a very high spectral efficiency (SE)
and connectivity with simple signal processing and resource
allocation schemes [2].

Massive MIMO can also be an emerging solution for multi-
pair relaying systems [3], [4]. In these systems, the direct links
of multiple pairs of source and destination nodes can be weak
because of large path loss and heavy shadowing. Therefore,
these pairs communicate simultaneously with the help of re-
lays equipped with massive antenna arrays. In the literature,
the transmissions between the source and destination nodes
can be performed using either one-way or two-way transmis-
sion schemes, either amplify-and-forward (AF) or decode-and-
forward (DF) protocols, and either half-duplex (HD) or full-
duplex (FD) relays. While multipair massive MIMO relaying
systems are well studied (see [3], [5] and references therein), we
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Fig. 1. A multipair relaying system with NAFD CFmMIMO.

only know of one paper on multipair relaying with CFmMIMO
[6]. In [6], a two-way DF relaying protocol is considered which
can obtain full gain only when the users know the instantaneous
channels for self-interference cancellation.

In this work, we consider a multipair one-way DF network-
assisted full-duplex (NAFD) CFmMIMO relaying system. The
idea of NAFD CFmMIMO was studied in [7]–[9] for traditional
communication scenarios. In this system, the standard HD
APs are used to virtually realize in-band FD transmissions
without the cost of eliminating self-interference (SI) in the
hardware. Specifically, the APs that are assigned an uplink (UL)
mode receive the signals from the source nodes and operate
simultaneously with the APs that are assigned a downlink (DL)
mode and transmit signals to the destination nodes. To the best
of our knowledge, there are no studies of NAFD CFmMIMO
systems for multipair DF relaying in the existing literature.

The contributions of this paper are summarized as follows.
We formulate the problem of optimizing the transmission mode
assignments (i.e., UL or DL) of HD APs, power control, and
large-scale fading decoding (LSFD) weights for maximizing
the achievable sum SE in a multipair NAFD cell-free massive
MIMO relaying system. The problem is subject to per-AP, per-
source-node transmit power constraints, and per-pair SE re-
quirements. Importantly, our formulated problem only needs to
be solved when the large-scale fading changes. We then propose
an algorithm to solve the challenging formulated mixed-integer
non-convex problem using successive convex approximation
techniques. Numerical results confirm that our proposed NAFD
approach significantly improves the SE of the system compared
to the traditional HD and heuristic approaches.
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II. SYSTEM MODEL AND ACHIEVABLE RATE

We consider a multipair DF relaying system where K com-
munication pairs (Sk, Dk),∀k ∈ K ≜ {1, . . . ,K}, are served in
the same time-frequency resource with the help of M access
points (APs) (acting as the relay nodes) under time-division
duplexing operation. The direct links between Sk and Dk are
ignored due to large path loss and/or heavy shadowing, as in
[3]. Each coherence block includes two phases: UL training
for channel estimation, and payload data transmission. Each
AP is connected to the central processing unit (CPU) via a
high-capacity backhaul link.

All source nodes Sk and destination nodes Dk are equipped
with a single antenna. Each AP is equipped with N transmit
antennas for a downlink (DL) mode and N receive antennas for
an uplink (UL) mode, with a different radio-frequency chain
for each mode. Each AP is assigned to operate either in DL or
UL mode to achieve the highest sum SE of transmission pairs,
as discussed in Section III. Importantly, the selection of AP
modes is performed on the large-scale fading time scale which
changes slowly with time. The mode assignment variables of
AP m,∀m ∈ M ≜ {1, . . . ,M}, are defined as

am ≜

{
1, if AP m operates in the DL mode
0, otherwise

,∀m, (1)

bm ≜

{
1, if AP m operates in the UL mode
0, otherwise

,∀m. (2)

Since AP m only operates in either the DL or UL mode, we
have

am + bm = 1,∀m. (3)
1) Uplink Training for Channel Estimation: Denote by

gSR,mℓ ∈ CN×1 and gRD,mk ∈ CN×1 the channel vectors from
Sℓ and Dk to AP m, respectively. These channels are modeled
as gSR,mℓ ∼ CN (βSR,mℓ, I) and gRD,mk ∼ CN (βRD,mk, I),
where βSR,mℓ and βRD,mk represent large-scale fading. In each
coherence block, of length τc, all Sℓ and Dk send their pairwise
orthogonal pilot sequences of length τp to all the APs; this
requires τp ≥ 2K. At AP m, gSR,mℓ and gRD,mk are estimated
by using the received pilot signals and minimum mean-square
error (MMSE) estimation. By following [2], the MMSE esti-
mates of gSR,mℓ and gRD,mk are ĝSR,mℓ and ĝRD,mk, respectively,
where ĝSR,mℓ ∼ CN (0, σ2

SR,mℓI), ĝRD,mk ∼ CN (0, σ2
RD,mkI),

with σ2
SR,mℓ ≜

τpρpβ
2
SR,mℓ

τpρpβSR,mℓ+1 , σ2
RD,mk ≜

τpρpβ
2
RD,mk

τpρpβRD,mk+1 , and ρp is
the normalized transmit power of each pilot symbol. Note that
the AP mode selection does not affect the channel estimation.

2) Pairing Payload Data Transmission: At time instant i, all
K source nodes Sk,∀k ∈ K, transmit their signals

√
ρuζksk[i]

to the UL APs, while each DL AP m transmits xm[i] ∈ CN×1

to all the destination nodes Dk,∀k ∈ K. Here, sk[i], where
E{|sk[i]|2} = 1, is the data symbol, ρu is the maximum
normalized transmit power of Sk, and ζk is an uplink power
control coefficient satisfying

0 ≤ ζk ≤ 1,∀k. (4)
The transmit signal xm[i] at AP m is the precoded version

of the signals detected from K source nodes. For ease of
distributed implementation, each AP is assumed to use its local
channel estimates to perform maximum-ratio (MR) processing

(i.e., conjugate beamforming) to precode the signals [2]. Let
sk[i−d] be symbol detected in the UL transmission associated
with source Sk after a processing delay d. Then, we have

xm[i] =
√
ρd
∑
k∈K

ϑmkĝ
∗
RD,mksk[i− d], (5)

where ρd is the maximum normalized transmit power at each
AP and ϑmk,∀m, k, are downlink power control coefficients.
We have

(ϑmk = 0,∀k, if am = 0), ∀m, (6)
to guarantee that if AP m does not operate in the DL mode, all
transmit powers ρdηmk,∀k, are zero, and xm[i] = 0. Each AP
m is required to meet the average normalized power constraint,
i.e., E

{
∥xm[i]∥2

}
≤ ρd, which can also be expressed as the

following per-AP power constraint∑
k∈K

σ2
RD,mkϑ

2
mk ≤ 1

N
,∀m. (7)

Since all the UL and DL APs operate in the same frequency
and time, the UL APs receive signals not only from the source
nodes but also the interference from the DL APs. Let Hmj ∈
CN×N be the Rayleigh fading channel matrix of the link from
AP m to AP j, whose elements are i.i.d. CN (0, βmj) RVs. At
the UL AP m (i.e., bm = 1), the received signal is

ym[i] =
√
ρu
∑
k∈K

√
bmζk gSR,mk sk[i]

+
∑

j∈{j′|j′∈M,aj′=1}

Hmj xj [i] +
√
bm wm[i]

(3),(6)
=

√
ρu
∑
k∈K

√
bmζk gSR,mk sk[i]

+
√
ρd

∑
j∈M\{m}

∑
ℓ∈K

√
bmϑ2

jℓ Hmj ĝ
∗
RD,jℓsℓ[i− d]

+
√
bm wm[i], (8)

where wm[i] ∼ CN (0, I) is a vector of additive noise. Equation
(8) captures the fact that if AP m does not operate in the
UL mode, i.e., bm = 0, it does not receive any signal, i.e,
ym[i] = 0. The UL AP m then performs maximum-ratio
combining (MRC) processing (i.e., matched filter) to combine
the received signals. Specifically, it computes ĝH

SR,mk ym[i] and
then forwards this signal to the CPU for signal detection. In
order to improve the SE, the CPU performs LSFD to obtain
aggregated signal for detecting sk[i] as follows [10]:

ỹk[i] =
∑

m∈M
αmkĝ

H
SR,mk ym[i], (9)

where αmk,∀m, k, are LSFD weights and
|αmk|2 ≤ 1,∀m, k. (10)

Then, by using the use-and-then-forget capacity-bounding tech-
nique [2], a closed-form expression for the UL achievable rate
of Sk is

RSR,k(b, ζ,ϑ,α) =
τc−τp
τc

log2(1 + ΓSR,k), (11)

where ΓSR,k is shown at the top of the next page, b ≜
{bm}, ζ ≜ {ζmk},ϑ ≜ {ϑmk},α ≜ {αmk},∀m, k.

At the destination node Dk, the received signal is
rk[i]=

∑
m∈M

gT
RD,mk xm[i− d] + nk[i]
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ΓSR,k=
Nρu

(∑
m∈M

√
bmζkαmkσ

2
SR,mk

)2
ρu
∑

m∈M
∑

ℓ∈K bmζℓα2
mkβSR,mkσ2

SR,mℓ+ρdN
∑

m∈M
∑

j∈M
∑

ℓ∈Kbmα2
mkϑ

2
jℓσ

2
SR,mkβmjσ2

RD,jℓ+
∑

m∈Mbmα2
mkσ

2
SR,mk

=
√
ρd
∑

m∈M
ϑmk g

T
RD,mk ĝ

∗
RD,mksk[i− d] + nk[i]

+
√
ρd
∑

m∈M

∑
ℓ∈K\{k}

ϑmℓ g
T
RD,mk ĝ

∗
RD,mℓsℓ[i− d], (12)

where nk ∼ CN (0, 1) is the additive noise. Then, by again
using the use-and-then-forget capacity-bounding technique [2],
we obtain the achievable rate of the transmission link from the
DL APs to Dk as

RRD,k(a,ϑ) =
τc−τp
τc

log2(1 + ΓRD,k), (13)

where ΓRD,k =
N2ρd(

∑
m∈M ϑmkσ

2
RD,mk)

2

ρdN
∑

m∈M
∑

ℓ∈K ϑ2
mℓβRD,mkσ2

RD,mℓ+1
, and a ≜

{am},∀m.
Thus, the end-to-end SE of the transmission pair k from Sk

to the APs and then to Dk is [3], i.e.,
Rk(a,b, ζ,ϑ,α) = min{RSR,k, RRD,k}, (14)

where RSR,k and RRD,k are given by (11) and (13), respectively.
III. PROBLEM FORMULATION AND SOLUTION

1) Problem Formulation: In this section, we design the UL
and DL mode assignment (a, b), allocating DL and UL power
control coefficients (ζ, η), and choosing LSFD weights α to
maximize the sum SE of transmission pairs, under the con-
straints on transmit power at each AP, transmit power at each
source node, and per-pair SE requirements. The optimization
problem is formulated as

max
x

∑
k∈K

Rk(x) (15a)

s.t. (1) − (3), (4), (6), (7), (10)
Rk(x) ≥ RQoS,∀k, (15b)

where x ≜ {a,b, ζ,α,ϑ}, and RQoS is the minimum rate
required for quality of service. Problem (15) is equivalent to

min
x,t

−
∑
k∈K

tk (16a)

s.t. (1) − (3), (4), (6), (7), (10)
tk ≤ RSR,k(a,b,µ,ϑ,α),∀k (16b)
tk ≤ RRD,k(a,ϑ),∀k (16c)
tk ≥ RQoS,∀k, (16d)

where t ≜ {tk} are an additional variable. (16) is a mixed-
integer optimization problem with strong coupling among vari-
ables and highly nonconvex constraints. Therefore, we trans-
form it into a more tractable form and use successive convex
approximation techniques to find its solution.

2) Proposed Solution: First, we make constraint (16b) more
tractable by introducing new non-negative variables µ ≜
{µmk}, µ̄ ≜ {µ̄mk}, µ̃ ≜ {µ̃mk}, µ̂ ≜ {µ̂mℓk}, α̃ ≜
{α̃mk}, α̂ ≜ {α̂mk}, η̄ ≜ {η̄jℓ}, η̂ ≜ {η̂mjkℓ}, where

µ2
mk ≤ bmζk,∀m, k (17)

µ̄2
mℓ ≥ bmζℓ,∀m, ℓ (18)

µmkαmk ≥ µ̃mk,∀m, k (19)
µ̄mℓαmk ≤ µ̂mℓk,∀m, ℓ, k (20)

α2
mk ≤ α̃mk,∀m, k (21)

bmα̃mk ≤ α̂mk,∀m, k (22)

ϑ2
jℓ ≤ η̄jℓ,∀j, ℓ (23)

α̂mkη̄jℓ ≤ η̂mjkℓ,∀m, j, k, ℓ. (24)
Here, (17)-(24) imply√

bmζkαmk ≥ µ̃mk,∀m, k (25)

bmζℓα
2
mk ≤ µ̂2

mℓk,∀m, ℓ, k (26)

bmα2
mk ≤ α̂mk,∀m, k (27)

bmα2
mkϑ

2
jℓ ≤ η̂mjkℓ,∀m, j, k, ℓ. (28)

Then, from (11), (25)-(28), we have

R̃SR,k(µ̃, µ̂, α̂, η̂) =
τc − τp

τc
log2

(
1 +

U2
k

Vk

)
≤ RSR,k, (29)

where Uk(µ̃) =
√
Nρu

∑
m∈M µ̃mkσ

2
SR,mk and Vk(µ̂, α̂, η̂)=

ρu
∑

m∈M
∑

ℓ∈K µ̂2
mℓkβSR,mkσ

2
SR,mℓ +

∑
m∈M̂αmkσ

2
SR,mk +

ρdN
∑

m∈M
∑

j∈M
∑

ℓ∈Kη̂mjkℓσ
2
SR,mkβmjσ

2
RD,jℓ. Therefore,

constraint (16b) can be replaced by
tk ≤ R̃SR,k(µ̃, µ̂, α̂, η̂),∀k. (30)

In the light of (7), we replace constraint (6) by
Nσ2

RD,mkϑ
2
mk ≤ am,∀m, k. (31)

Regarding binary constraints (1) and (2), we see that x ∈
{0, 1} ⇔ x ∈ [0, 1]&x − x2 ≤ 0. Therefore, (1) and (2) can
be replaced by

Q(a,b) ≜
∑

m∈M
(am − a2m) +

∑
m∈M

(bm − b2m) ≤ 0 (32)

0 ≤ am ≤ 1, 0 ≤ bm ≤ 1,∀m. (33)
From the discussions above, problem (16) can be written in

a more tractable epigraph form as
min
x̂∈F

−
∑
k∈K

tk (34)

where F ≜ {(3), (4), (7), (10), (16b)− (16d), (17)− (24), (30)−
(33)} and x̂ = {x, t,µ, µ̄, µ̃, µ̂, α̃, α̂, η̄, η̂}. Then, we consider
the following problem

min
x̂∈F̂

L(x̂), (35)

where L(x̂) ≜ −
∑

k∈K tk + λQ(a,b) is the Lagrangian of
(34), λ is the Lagrangian multiplier corresponding to constraint
(32), and F̂ ≜ F \{(32)}.

Proposition 1. The values Qλ of Q at the solution of (35)
corresponding to λ converge to 0 as λ → +∞. Also, problem
(34) has strong duality, i.e.,

min
x̂∈F

−
∑
k∈K

tk = sup
λ≥0

min
x̂∈F̂

L(x̂). (36)

Then, (35) is equivalent to (34) at the optimal solution λ∗ ≥ 0
of the sup-min problem in (36).

Proof. The proof follows [11], and hence, omitted due to lack
of space.
Theoretically, Qλ must be zero to obtain the optimal solution
to (34). According to Proposition 1, the optimal solution to (34)
can be obtained as λ → +∞. For practical implementation, it
is acceptable for Qλ to be sufficiently small with a sufficiently
large value of λ. In our numerical experiments, λ = 1 is enough
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to ensure that Qλ ≤ ε with ε = 10−3. Note that this approach
of selecting λ has been widely used in the literature (see [11]
and references therein).

Problem (35) is now solved by successive convex approxima-
tion techniques as follows. To deal with the constraints (16c),
following [12, Eq. (40)], we see that RRD,k has a concave lower
bound R̂RD,k which is given by

R̂RD,k(a,ϑ) =
τc − τp
τc log 2

[
log

(
1 +

(A
(n)
k )2

B
(n)
k

)
−

(A
(n)
k )2

B
(n)
k

+ 2
A

(n)
k Ak

B
(n)
k

−
(A

(n)
k )2(A2

k +Bk)

B
(n)
k ((A

(n)
k )2 +B

(n)
k )

]
,

where Ak = N
√
ρd
∑

m∈M ϑmkσ
2
RD,mk and Bk =

ρu
∑

m∈M
∑

ℓ∈K ϑ2
mℓβmkσ

2
RD,mℓ+1. Then, constraint (16c) is

approximated by the following convex constraint:
tk ≤ R̂RD,k(a,ϑ),∀k. (37)

Similarly, we see that the concave lower bound R̂SR,k of R̃SR,k

is given by [12, Eq. (40)]

R̂RD,k(µ̃, µ̂, α̂, η̂) =
τc − τp
τc log 2

[
log

(
1 +

(U
(n)
k )2

V
(n)
k

)
−

(U
(n)
k )2

V
(n)
k

+ 2
U

(n)
k Uk

V
(n)
k

−
(U

(n)
k )2(U2

k + Vk)

V
(n)
k ((U

(n)
k )2 + V

(n)
k )

]
,

Therefore, the constraint (30) (i.e., (16b)) is approximated by
the following convex constraint

tk ≤ R̂SR,k(µ̃, µ̂, α̂, η̂),∀k. (38)
We also observe that xy ≤ 0.25[(x+y)2−2(x(n)−y(n))(x−

y) + (x(n) − y(n))2] and −xy ≤ 0.25[(x − y)2 − 2(x(n) +
y(n))(x + y) + (x(n) + y(n))2],∀x ≥ 0, y ≥ 0 [12]. Thus, Q
has the convex upper bounds which are given by

Q̂(a,b) ≜
∑

m∈M
(am − 2a(n)m am + (a(n)m )2)

+
∑

m∈M
(bm − 2b(n)m bm + (b(n)m )2). (39)

Similarly, constraints (17)-(20), (22), and (24) can be approxi-
mated by the following convex constraints
µ2
mk + 0.25[(bm − ζk)

2 − 2(b(n)m + ζ
(n)
k )(bm + ζk)

+ (b(n)m + ζ
(n)
k )2] ≤ 0,∀m, k (40)

0.25[(bm + ζℓ)
2 − 2(b(n)m − ζ

(n)
ℓ )(bm − ζℓ) + (b(n)m − ζ

(n)
ℓ )2]

− 2µ̄
(n)
mℓ µ̄mℓ + (µ̄

(n)
mℓ )

2 ≤ 0,∀m, ℓ (41)

µ̃mk + 0.25[(µmk − αmk)
2 − 2(µ

(n)
mk + α

(n)
mk)(µmk + αmk)

+ (µ
(n)
mk + α

(n)
mk)

2] ≤ 0,∀m, k (42)

0.25[(µ̄mℓ + αmk)
2 − 2(µ̄

(n)
mℓ − α

(n)
mk)(µ̄mℓ − αmk)

+ (µ̄
(n)
mℓ − α

(n)
mk)

2]− µ̂mℓk ≤ 0,∀m, ℓ, k (43)

0.25[(bm + α̃mk)
2 − 2(b(n)m − α̃

(n)
mk)(bm − α̃mk)

+ (b(n)m − α̃
(n)
mk)

2]− α̂mk ≤ 0,∀m, k (44)

0.25[(α̂mk + η̄jℓ)
2 − 2(α̂

(n)
mk − η̄

(n)
jℓ )(α̂mk − η̄jℓ)

+ (α̂
(n)
mk − η̄

(n)
jℓ )2]− η̂mjkℓ ≤ 0,∀m, j, k, ℓ. (45)

At iteration (n+ 1), for given point x̂(n), problem (35) can
be approximated by the following convex problem

min
x̂∈F̃

L̂(x̂), (46)

Algorithm 1 Solving problem (35)

1: Initialize: n=0 and a random point x̂(0) ∈ F̂ .
2: repeat
3: Update n = n+ 1
4: Solve (46) to obtain its optimal solution x̂∗

5: Update x̂(n) = x̂∗

6: until convergence

where L̂(x̂)≜−
∑

k∈K tk + λQ̂(a,b), F̃≜{F̂ , (37), (38), (42)
−(40)}\{(16c), (17)−(20), (22), (24), (30)} is a convex feasible
set. We outline the main steps to solve problem (34) in
Algorithm 1. Starting from a random point x̂ ∈ F̂ , we solve
problem (46) to obtain its optimal x̂∗ and use this solution as
an initial point to the next iteration. Algorithm 1 terminates
when a certain accuracy threshold is obtained.

3) Convergence: Algorithm 1 will converge to a stationary
point, i.e., a Fritz John solution, of problem (34) (hence (16)
or (15)). The proof of this fact is rather standard, and follows
from [11, Proposition 2].

IV. NUMERICAL EXAMPLES

1) Network Setup and Parameter Settings: We consider a
cell-free massive MIMO network, where APs and UEs are
randomly distributed in a square of 0.5×0.5 km2, whose edges
are wrapped around to avoid boundary effects. The distances
between adjacent APs are at least 50 m. We set RQoS = 0.2
bits/s/Hz, N = 2, K = 4 transmission pairs, τc = 200,
τp = 2K and ε = 10−3, bandwidth B = 50 MHz, and noise
figure F = 9 dB. Thus, the noise power σ2

n = kBT0BF ,
where kB = 1.381 × 10−23 J/oK is the Boltzmann constant,
while T0 = 290oK is the noise temperature. Let ρ̃d = 1
W, ρ̃u = 0.1 W and ρ̃t = 0.1 W be the maximum transmit
power of the APs, UL UEs and UL training pilot sequences,
respectively. The normalized maximum transmit powers ρd, ρu,
and ρt are calculated by dividing these powers by the noise
power. The large-scale fading coefficients βmk are modelled
in the same manner as [13, Eqs. (37), (38)]. The following
simulation results are averaged over 200 channel realizations.
In each channel realization, if the optimization problem of a
scheme is infeasible, we set the SE achieved at all the nodes
of that scheme to zero.

2) Results and Discussions: To evaluate the effectiveness
of our proposed NAFD approach, we consider the following
baseline schemes:

• Half-duplex (HD): The data transmission phase is divided
into two equally long parts, of length (τc − τp)/2. Each
part is used for the transmission from source nodes to the
APs or from the APs to the destination nodes. The HD
scheme does not experience interference from DL APs to
UL APs. All APs operate in the UL mode to receive signals
from source nodes and then switch to the DL mode to
transmit to destination nodes. We then apply our algorithm
with some modifications to optimize the power control
coefficients (ζ, η), and LSFD weights α, under the same
transmit power constraints for source nodes and DL APs.

• Heuristic (HEU): The AP modes a and b are assigned
randomly. Specifically, Md APs are assigned to operate in
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Fig. 2. Comparisons among considered schemes.

DL mode, and the remaining (M−Md) APs operate in UL
mode. Here, Md is a random integer number in [M6 , 5M

6 ].
Here, power control coefficients (ζ, η), and LSFD weights
α are also optimized similarly as HD.

Note that [6] considers the total power constraint for all the
APs. To make a fair comparison between the two-way DF
CFmMIMO relaying system in [6] and our one-way DF NAFD
CFmMIMO relaying system, the proposed power control algo-
rithm in [6] must be modified with the per-AP power constraints
(7). However, modifying this algorithm is not straightforward.
Therefore, we leave a comprehensive comparison between the
two-way DF CFmMIMO relaying system in [6] and our one-
way DF NAFD CFmMIMO relaying system for our future
work.

Fig. 2 compares the spectral efficiencies of all the considered
schemes. As seen, in terms of 90%-likely performance of sum
and per-pair spectral efficiencies, our proposed scheme NAFD
significantly outperforms the baseline schemes. In particular,
NAFD substantially increases the 90%-likely sum SE, com-
pared with that of HD, e.g., by more than 63% with M = 30
and 60.26% with M = 60. This is reasonable because NAFD
can serve the source and destination nodes at the same time,
and hence, does not have the pre-log factor of 1/2 in the SE as
the HD scheme does. Moreover, the AP-to-AP inferences in the
system are well managed by optimizing AP mode assignment,
power control, and LSFD weights.

On the other hand, the HEU scheme is infeasible for nearly
50% of all channel realizations. In the channel realizations
that the HEU scheme is feasible, the SE of HEU and HD
are close. These results show the significant advantage of the
optimized AP mode assignment to improve the SE of multipair
CFmMIMO relaying systems, compared with the heuristic AP
mode assignment. Finally, Fig. 2c demonstrates the advantage
of massive MIMO in improving the SE of transmission pairs.
The average SE gaps between NAFD and HD increase from
54% to 68% when the number of APs increases from 30 to 60.

V. CONCLUSION

We proposed a joint optimization approach to design AP
mode assignment, power control and LSFD weights for multi-
pair decode-and-forward cell-free massive MIMO relaying sys-
tems. We formulated a mixed-integer nonconvex optimization

problem to maximize the sum SE of transmission pairs, under
per-pair SE requirements, and constraints on the per-source-
node and per-AP maximum transmit powers. Utilizing succes-
sive convex approximation techniques, we proposed a novel
algorithm to solve the formulated problem. Numerical results
showed that our proposed NAFD approach can significantly
increase the SE compared with the traditional HD and heuristic
approaches.
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