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Abstract—This paper presents a new framework compris-
ing the combination of uplink cell-free massive multiple input
multiple output (mMIMO) with non-orthogonal multiple access
(NOMA) for serving Internet-of-Things (IoT) devices in an un-
coordinated manner. We investigate the benefits of reinforcement
learning to support the massive connectivity and quality of
service (QoS) requirements of IoT devices. Using the multi-armed
bandit technique, the devices jointly determine their subband
and transmit power, without any cooperation, in such a way as
to strike a balance between the QoS and the transmit power.
Applied with a dynamic cooperation clustering of serving access
points (APs), the allocation technique is shown to achieve a
quick convergence while having a negligible loss in performance
towards a system that relies on all deployed APs for serving the
devices.

Index Terms—IoT, NOMA, Cell-free networks, massive
MIMO, channel allocation, power control, uncoordinated trans-
missions.

I. INTRODUCTION

During the last decade, Internet-Of-Things (IoT) communi-
cations have witnessed massive growth due to the generaliza-
tion of various applications related to connected healthcare, au-
tonomous vehicles, industrial automation, and environmental
monitoring, among others. These spreading applications open
the door to new challenges and constraints that researchers
and engineers must face to cope with the limited spectrum
and high interference generated by massive connectivity. In
particular, 5G and beyond standards are urged to design
a reliable communication framework with low latency and
minimum complexity features. In order to fulfill these re-
quirements, new network schemes need to be introduced. In
fact, traditional cellular networks currently deployed have so
far failed to ensure an acceptable level of uniformity in the
quality of service (QoS) offered to users or devices. Instead,
large variations of data rates are witnessed throughout the
cells, with high peaks at cell centers and a low QoS at cell-
edges. An alternative structure has recently emerged, namely,
cell-free massive multiple input multiple output (CF-mMIMO)
[1], [2], where an important number of access points (APs)
are distributed over the deployment area and cooperate to
serve cellular users or IoT devices optimally. Each of these
densely deployed APs is equipped with a small number of
antennas and is connected to a central processing unit (CPU)
via fronthaul links constituted by high-capacity coaxial cables
or fiber optics. Indeed, the uniformity of the signal quality in

the cell-free context was proven in [3], [4], [5], [6] through
practical channel measurements.
Several previous works dealt with resource allocation in the
context of uplink CF-mMIMO. In [7], deep reinforcement
learning and sequential convex approximation (SCA) are used
to solve the sum-rate fairness trade-off power optimization
problem. The work in [8] proposes low-complexity solutions
based on deep learning for solving the max-min, max-product,
and max-sum-rate power control problems. The joint optimiza-
tion of receive combining and power control is performed in
[9] using a mirror prox-based method. Low-complexity convex
algorithms are used in [10] for joint power control and AP
scheduling under stringent fronthaul bandwidth constraints.
Another promising paradigm that is envisioned as an efficient
lever for cell-free networks is that of non-orthogonal multiple
access (NOMA). The importance of combining NOMA with
cell-free architectures is stressed in [11] for properly handling
interference in massive IoT transmissions. However, most of
the works on resource allocation in CF-mMIMO-NOMA focus
on downlink transmissions, while only a few consider the
uplink context. In [12], the power allocation problem is solved
by SCA to maximize the total spectral efficiency in CF-
mMIMO-NOMA while respecting quality-of-service (QoS),
transmit power, and successive interference cancellation (SIC)
constraints. Optimal combining is considered in [13] with
max-min QoS power control and user grouping. Optimal
power control is also studied in [14], [15]. While all these
works show the importance of combining NOMA with CF-
mMIMO in uplink transmissions, none of them considers
subband or channel allocation.
In this work, we focus on uncoordinated power control and
spectrum access which has recently received a rising interest
from the research community [16], [17], [18]. In such systems,
users choose their channel and transmit data whenever needed
without having to formulate a prior scheduling request to
the control unit. Such distributed strategies greatly reduce
communication latency and signaling overhead. However, the
problem of collisions that arises in this framework needs to
be addressed by proper multiple access techniques, leveraging
NOMA and/or reinforcement learning techniques that allow
devices to adjust their transmissions and minimize collisions
distributively [18], [19]. To our knowledge, this is the first
work considering uncoordinated uplink transmissions in CF-
mMIMO-NOMA. We develop a solution to the joint subband
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and power allocation based on the multi-player multi-armed
bandit (MAB) framework [20], [17], [18] with zero-reward on
collision. We particularly show how the MAB algorithm can be
adapted to the special context of CF-mMIMO-NOMA. For this
purpose, in section II, we start by detailing the system model.
Then, section III shows the adaptation of the Upper Confidence
Bound (UCB) algorithm from [19] to CF-mMIMO-NOMA.
Section IV summarizes the simulation results and analyses,
while section V concludes the paper.

II. SYSTEM MODEL

The communication network comprises L APs randomly
deployed over a large coverage area, with N antennas per
AP. K single-antenna devices transmit signals on C available
subbands and are jointly received by the APs. These K devices
are an active subset from a larger set of randomly deployed
IoT devices that transmit information when needed. We denote
by hk,l,c the N ×1 channel vector between device k and AP l
on subband c, each element containing the channel amplitude
between k and one of the N antennas of l on this specific
subband. The channel amplitudes follow the random model in
[21] which includes correlated Rayleigh fading, path loss and
shadowing. The devices are supposed to be stationary during
the transmission phase. All APs receive a superposition of the
signals sent from all devices. The received signal at AP l on
subband c is:

yl,c =
K∑

k=1

hk,l,csk,c + nl,c, (1)

where sk,c is the signal transmitted from device k on subband
c with a power pk,c and nl,c is the complex additive Gaussian
noise, nl,c ∼ N (0N , σ2IN ). Each device has a maximum
power budget pmax that it must not exceed and sends its
information on a unique subband.

The dynamic cooperation clustering (DCC) framework from
[21] is adopted with the AP selection technique from [22]
being applied prior to the communication phase to determine
the subset of APs that serve each device k. Let Mk ⊂
{1, 2, . . . , L} be the subset of indices of the APs serving k.
Also, define the N ×N matrix Dk,l which equals the identity
matrix IN if k is served by AP l or 0N×N otherwise. The
channel amplitudes are assumed to be perfectly known by the
devices through proper channel estimation techniques which
are beyond the scope of this paper. This knowledge is needed
for the uncoordinated setup, where devices access channels
without the need to be granted access beforehand by the CPU.
In this work, we mainly focus on the centralized operation of
the network, where APs act as remote radio heads (RRHs)
as in [23], [24]. However, the distributed operation [21]
can be applied as an extension to this study. In uplink, the
APs forward their received signals to the CPU through the
fronthaul links that are assumed to be error-free. The CPU
performs receive combining on the received signals, yielding
the estimate of the symbol of user k on subband c:

ŝk,c = vHk,cDkyc, (2)

where yc = [yT1,c, · · · , yTL,c]
T is the collective received signal,

Dk = diag(Dk,1,Dk,2, · · · ,Dk,L) a M × M block diagonal
matrix (M = N ×L) and vk,c the receive combining vector for
the signal of k on c. Assuming perfect channel estimation at
the CPU, the signal-to-interference ratio (SINR) for the signal
of user k is given by:

Γk =
pk,c|vHk,cDkhk,c|2∑K

k′=1,k′ ̸=k pk′,c|vH
k,cDkhk′,c|2 + σ2∥Dkvk,c∥2

, (3)

where hk,c is the M × 1 collective channel of k: hk,c =
[hH

k,1,c,hH
k,2,c, · · · ,hH

k,L,c]
H . Note that (3) will subsequently

be modified to take into account the specific SIC scheme
and power control in NOMA. Moreover, the time index,
corresponding to a particular timeslot t, has not been added to
powers, channels, and combining vectors to simplify notations.

In this work, channel assignment and power control are
jointly determined using an uncoordinated spectrum access
technique that does not require any communication between
devices nor a centralized allocation by the CPU. More specif-
ically, we rely on NOMA and generalize the power control
model in [25], [19] to the cell-free context. Its aim is to
enable multiple devices to transmit on the same subband while
achieving a non-zero rate. This is done by ensuring that the
received power levels of the devices sharing a subband are
distinct enough to enable SIC decoding at the CPU. Let J be
the number of available received power levels per subband and
Γr the required SINR to guarantee a corresponding requested
QoS for each device. It can be shown [25] that the jth received
power level qj , j = 1, · · · , J (q1 > q2 > ... > qJ ), to
guarantee the required SINR, is:

qj = σ2Γr(Γr + 1)J−j . (4)

To reach a received power level qj on a subband c, each
device k evaluates its needed transmit power according to:

pk,c =
qj

|vH
k,cDkhk,c|2

. (5)

For the signals to be successfully decoded at the CPU, the
number of devices transmitting on each subband must not
exceed that of the power levels J , and devices must select
different power levels. Otherwise, power collisions occur.
Since SIC in uplink NOMA is done in the descending order
of the received power levels, when a collision takes place on
a specific power level j, all signals received on levels i, i ≥ j,
are lost and cannot be recovered. Moreover, the collision can
also cause upper-level signals to be undecodable if their target
SINR is not reached.

Several receive combining techniques can be used in uplink
CF-mMIMO [21], like the optimum minimum mean squared
error (MMSE) or the more scalable maximal ratio (MR)
combining scheme. The first is given by:

vk,c = pk,c

(
K∑

k′=1

pk′,cDkhk′,chH
k′,cDk + σ2IM

)−1

Dkhk,c,

(6)
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whereas the MR combining vector is vk,c = Dkhk,c. In order
to determine its transmit power on subband c and power level
j using (5), device k needs to evaluate the detection vector that
will be applied at the CPU level. Since the MMSE combining
involves transmit powers and channel gains of other devices
for proper inter-user interference cancelation, and since such
information cannot be available at device k, (6) cannot be used
to find vk,c. Moreover, applying (6) at the CPU for receive
combining requires that the latter have an exact knowledge of
all the device’s transmit powers, which is not in the spirit of
uncoordinated communications. Therefore, we propose to rely
instead on the MR combining since, in addition to being less
complex to implement compared to MMSE, it only involves
the channel gain of k.

III. DESCRIPTION OF THE UNCOORDINATED RESOURCE
ALLOCATION STRATEGY

The multi-player MAB framework with zero-reward on
collision [20], [17], [18] is used to model the joint subband
allocation and power control problem. In this framework, each
player (i.e. device) k first builds its action profile Ak from its
available set of arms, as was done in [19]. Ak is constituted
by the subband-power level pairs on which the device can
transmit without violating its power budget pmax: Ak={a1, a2,
... , aMk

}, where Mk is the number of valid arms for k. Upon
choosing an action am, each device k receives a reward from
the CPU given by the following utility function:

Uk,am = ηk,am ×Bc log2(1 + Γk,am). (7)

In (7), ηk,am is the collision indicator for k on arm am,
which is zero in case of a power collision (i.e. 2 or more
users choosing the same power level on a subband or when
Γk,am

< Γr), and 1 otherwise. Bc is the subband bandwidth
and Γk,am

the achieved SINR of device k when choosing
action am, given by:

Γk,am
=

qi∑
l∈Bi,c

pl,c|vHk,cDkhl,c|2 + σ2∥Dkvk,c∥2
, (8)

where qi is the power level chosen in action am by device
k and Bi,c is the index set of users having chosen the
subband c and received power level qj , j > i. The sum in
the denominator of (8) accounts for the interference of the
other devices signals that have not yet been canceled with
SIC, while decoding the signal of k.

The uncoordinated resource allocation problem in the CF-
mMIMO-NOMA context is solved by using the UCB algo-
rithm proposed in [26] as well as its enhanced version from
[19]. The latter extends the UCB technique in such a way as
to consider the power consumption of the devices to optimize
their battery life. To this aim, the best arm identification
is modified in the enhanced UCB algorithm to balance the
achieved rate on the considered arm and the necessary transmit
power. Therefore, device k selects its best arm based on:

a
(k)
best = argmax

am∈Ak

(
α
log2(1 + Γk,am

)

log2(1 +
q1
σ2 )

− β
pk,c
pmax

)
, (9)

where α and β are two positive weights s.t. α+ β = 1. Note
that each term in (9) has been normalized by its maximum
possible value, and pk,c is estimated by device k using (5) for
arm m. The uncoordinated joint channel and power allocation
technique is summarized in Algorithm 1, where T is the time
horizon, t the timeslot index, and nk(ai, t) the number of times
arm ai is played by device k until timeslot t.

Algorithm 1: Enhanced UCB allocation
Initialization: Each device k explores the actions in
Ak by playing the arms in random order and
collecting their utilities.

for t=1:T do
for k=1:K do

// k identifies its best arm:
a
(k)
best =

argmax
am∈Ak

(
α

Q(k,am)+
√

2 log(t)
nk(am,t)

Bc log2(1+
q1
σ2 )

− β
pk,c

pmax

)
//k updates its parameters based on its received
utility:
sk(a

(k)
best, t+ 1) = sk(a

(k)
best, t) + U

k,a
(k)
best

nk(a
(k)
best, t+ 1) = nk(a

(k)
best, t) + 1

Q(k, a
(k)
best) =

sk(a
(k)
best ,t+1)

nk(a
(k)
best ,t+1)

end
end

IV. SIMULATION RESULTS AND DISCUSSIONS

In the simulation setup of the CF-mMIMO-NOMA system,
a coverage area of 1 Km × 1 Km is considered with a
wrap-around topology [21]. L = 100 APs are randomly
deployed over the area, and each one is equipped with a half-
wavelength-spaced uniform linear array of N = 4 antennas.
K = 50 users are served over C = 10 subbands of bandwidth
Bc = 180 kHz, equivalent to the bandwidth of a resource
block in 5G networks. J = 5 power levels are considered
per subband. The power budget pmax is set to 23 dBm. The
APs noise power is -114 dBm, with a noise factor of 7 dB.
Algorithm 1 (indicated by ”Enhanced-UCB”) is applied with
α = β = 0.5 and a time horizon of T = 200 timeslots of 1 ms
each. Its performance is analyzed for the DCC setup as well
as another one, indicated by ”ALL” in the graphs, where all L
APs jointly serve the K users (i.e. no AP selection is applied).
Also, the performance of two other allocation techniques are
shown for comparison in both DCC and ALL setups: the
random subband and power level access (indicated by ”RA”)
and the basic UCB algorithm (indicated by ”UCB”) from [26].
The latter uses a

(k)
best = argmax

am∈Ak

(
Q(k, am) +

√
2 log(t)
nk(am,t)

)
for

identifying the best arms, without accounting for the transmit
power.
Fig. 1 shows the evolution of the percentage of users with
a successful transmission (PST), i.e. having Γ

k,a
(k)
best

≥ Γr,
in terms of the requested rate in Mbps, while Fig. 2 shows
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the corresponding average transmit power per device. We can
first note how the Enhanced-UCB algorithm outperforms the
UCB in terms of the transmit power which is smaller for all
values of the requested rate. However, Enhanced-UCB trades
the probability of success for the transmit power and therefore
presents a lower PST compared to UCB. Indeed, at a requested
rate of 0.5 Mbps, Enhanced-UCB spares an average transmit
power of 3.5 dBm, with a loss in PST of almost 10%. The
RA method leads to a significantly higher power and a much
lower PST when compared to Enhanced-UCB.
Moreover, when comparing the DCC setup to the ALL setup,
one can see that both methods necessitate a very close transmit
power and yield the same performance in terms of PST. This
observation is valid for all values of the requested rate, while
in previous works like [21] that compared the two setups in the
uplink, a small loss in performance was generally observed in
DCC. In fact, DCC reduces the number of involved APs per
user, compared to ALL, and therefore the denominator of the
SINR in (8). More specifically, the interference of some of the
signals that have not been removed yet by SIC (corresponding
to lower power levels on the same subband) on the signal
of device k is reduced, which tends to increase the SINR.
However, this gain in SINR is also counteracted by an increase
in the transmit power of k, which can be seen when observing
the denominator of (5) that decreases by DCC compared to
ALL. The slight increase in the transmit power, which is
noticeable in the small rate region of fig. 2, can sometimes
lead to a reduction in the number of available arms for k
(recall that arms that exceed the power budget are blocked
by the system design). However, if the involved APs are well
selected among the best ones that can efficiently serve the
users, the removed ones by Dk should have a minor influence
on the overall channel gain of the device k. As the required
rate increases, it reaches a point where the number of valid
arms in the sets Ak, k = 1, · · · ,K, becomes limited. Thus,
the number of collisions grows (since devices tend to choose
the same arms) and the realized rates deteriorate rapidly, for
both UCB and Enhanced-UCB, as well as the PST.
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Fig. 2. Average transmit power per device in terms of the requested
data rate

In Figs. (3) and (4), we study the convergence of the UCB
and Enhanced-UCB algorithms by showing the evolution of
the PST and the total transmit power (of all devices) for
the different methods over the time horizon, with a target
rate of 0.5 Mbps. The results show that the UCB-ALL and
UCB-DCC techniques have the fastest convergence and reach
a PST of 98% and 97%, respectively, after 50 timeslots.
Enhanced-UCB-ALL and Enhanced-UCB-DCC come next in
convergence and reach 94% and 93% after 60 timeslots,
respectively. The RA scheme has the poorest PST which keeps
fluctuating around 37%. Its total transmit power is much higher
than that of Enhanced-UCB and close to that of UCB, evolving
around 31.6 dBm, compared to 29 dBm and 32.2 dBm for
Enhanced-UCB-DCC and UCB-DCC respectively.
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V. CONCLUSION

In this paper, the uncoordinated resource allocation problem
in cell-free massive MIMO NOMA is solved for the first time
using a reinforcement learning framework. In this framework,
devices randomly deployed in the coverage area determine
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their subband and transmit power without any cooperation
using a strategy based on the UCB algorithm. This method is
applied in two cell-free configurations: one that serves devices
through a well-chosen, pre-selected subset of APs, and another
that uses the entire set of deployed APs. The results showed
that the first scenario has a negligible loss in performance
compared to the second in terms of the probability of success
and the transmit power of the devices. It was also shown that,
as in [19], integrating the transmit power into the decision
metric allows devices to settle on arms that tend to spare
their transmit power while slightly reducing their chances
of meeting their QoS requirements. The current study was
performed under the assumption of a centralized operation,
where the CPU performs signal combining based on the
received signals from the APs, which act as distributed RRHs.
The study can be directly extended to the case of a distributed
operation where the SIC is implemented at the level of more
intelligent APs. Such an interesting extension of the current
work can also include the influence of imperfect channel
estimation.
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