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Abstract—Resource allocation is a fundamental task in cell-
free (CF) massive multi-input multi-output (MIMO) systems,
which can effectively improve the network performance. In
this paper, we study the downlink of CF MIMO networks
with network clustering and linear precoding, and develop a
sequential multiuser scheduling and power allocation scheme. In
particular, we present a multiuser scheduling algorithm based on
greedy techniques and a gradient ascent (GA) power allocation
algorithm for sum-rate maximization when imperfect channel
state information (CSI) is considered. Numerical results show
the superiority of the proposed sequential scheduling and power
allocation scheme and algorithms to existing approaches while
reducing the computational complexity and the signaling load.

Index Terms—Power allocation, user scheduling, massive
MIMO, cell-free, clustering, complexity

I. INTRODUCTION

Cell-free (CF) massive MIMO networks introduced in [1]
are distributed massive MIMO networks that include several
access points (APs) over a geographic area to serve user
equipments (UEs) in the same time and frequency resources,
which provides uniform performance across users and im-
proves coverage. Since CF networks in which all UEs are
served by all APs, need to process all channels and signals
in a central processing unit at the same time, they result in
a huge burden to the processors and a substantial increase in
costs. Therefore, it is necessary to use clustering techniques,
which include network-centric and user-centric approaches [2]
to reduce signaling and computational costs.

Resource allocation including power allocation and mul-
tiuser scheduling are key tasks for CF networks that can
improve the system performance and have attracted a lot of
attention in the literature [3]–[8]. Multiuser scheduling can
reduce multiuser interference in CF networks, improving the
system performance. In addition, if the number of receive
antennas is larger than those of transmit antennas, it is impos-
sible to support all the receivers which makes it necessary to
employ multiuser scheduling. In this context, power allocation
also leads to significant performance improvement in CF
massive MIMO networks. In [9], the problem of multiuser
scheduling, power allocation and beamforming in a user-
centric cell-free MIMO wireless system has been solved by

maximization of a weighted sum-rate (WSR) problem. The
joint optimization of UE scheduling, power allocation and
pilot length is investigated in [10] and the minimum ergodic
user rate in the downlink transmission is maximized. In [11],
the energy efficiency of a user-centric CF massive MIMO
system is enhanced by solving a total grid power consumption
minimization problem with a joint AP selection and user
scheduling algorithm.

In this paper, we consider linear minimum mean square
error (MMSE) and zero forcing (ZF) precoders and investigate
the downlink of clustered CF massive MIMO networks with
multiuser scheduling and power allocation. In particular, we
develop a sequential multiuser scheduling and power alloca-
tion (SMSPA) scheme based on enhanced greedy and GA
techniques to maximize the sum-rate. The proposed enhanced
subset greedy (ESG) technique approaches the performance
of the optimal exhaustive search method while significant
computational cost can be saved. The proposed GA algorithm
maximizes the sum-rate and is performed after scheduling the
desired UEs set. Simulations show that the proposed SMSPA
scheme, ESG and GA algorithms outperform competing ap-
proaches.

Notation: Throughout the paper, ∥.∥F denotes the Frobenius
norm, IN denotes the N × N identity matrix, the complex
normal distribution is represented by CN (., .), superscripts T ,
∗, and H denote transpose, complex conjugate and hermitian
operations respectively, A ∪ B is union of sets A and B, and
A \ B shows exclusion of set B from set A.

II. SYSTEM MODEL

The downlink of a CF massive MIMO network is consid-
ered where K uniformly distributed single-antenna UEs are
supported by M single-antenna APs. Then, the CF network is
clustered by dividing the network area into C non-overlapping
clusters so that the cluster c includes Kc uniformly distributed
single-antenna UEs and Mc single-antenna APs. We assume
that the number of UEs is much larger than the number of
APs so that K >> M for the CF network and Kc >> Mc

for cluster c of the clustered CF network, which requires the
scheduling of a subset of nc ≤ Mc UEs per cluster.
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A. Cell-free massive MIMO network and the clustered context

In the CF network, the channel coefficient between AP m
and UE u is shown by gm,u =

√
βm,uhm,u, [1], including the

large scale fading βm,u and the small-scale fading hm,u ∼
CN (0, 1) defined as independent and identically distributed
(i.i.d.) random variables (RVs) constant during a coherence
interval and independent over different coherence intervals.
After scheduling n ≤ M out of K UEs, the received signal is
given by

y =
√
ρfG

TPx+w

=
√
ρfĜ

TPx+
√
ρfG̃

TPx+w
(1)

where ρf is the maximum transmitted power of each antenna,
G = Ĝ + G̃ is the M × n channel matrix, in which Ĝ is
the channel estimate, G̃ is the estimation error that models
the CSI imperfection and [G]m,u = gm,u, m ∈ {1, . . . ,M},
u ∈ {1, . . . , n}, P is the M ×K linear precoder matrix
such as MMSE or ZF, x = [x1, . . . , xn]

T is the zero
mean symbol vector with mutually independent elements and
independent of the channel coefficients x ∼ CN (0, In),
and w = [w1, · · · , wn]

T is the additive noise vector with
w ∼ CN

(
0, σ2

wIn
)

and statistically independent of the signal
vector. For Gaussian signaling, the sum-rate of the CF system
is given by

RCF = log2 (det [R+ In]) , (2)

where the covariance matrix R is expressed by

R = ρfĜ
TPPHĜ∗

(
ρfG̃

TPPHG̃∗ + σ2
wIn

)−1

(3)

In the clustered CF network, after scheduling nc ≤ Mc out of
Kc UEs, the received signal at cluster c is

yc =
√
ρfĜ

T
ccPcxc +

√
ρfG̃

T
ccPcxc

+

C∑
i=1,i̸=c

√
ρfĜ

T
icPixi +

C∑
i=1,i̸=c

√
ρfG̃

T
icPixi +wc

(4)

where Gic = Ĝic + G̃ic is Mi × nc channel from APs of
the cluster i to the UEs of the cluster c, Pi is Mi × nc linear
precoding matrix, xi = [xi1, . . . , xinc ]

T , xi ∼ CN (0, Inc)
is the symbol vector of the cluster i, i ∈ {1, 2, . . . , C}, and
wc =

[
wc1 . . . , wcnc

]T
is the additive noise vector with wc ∼

CN
(
0, σ2

wInc

)
. Therefore, the sum-rate of the cluster c in this

network is given by

Rc = log2

(
det

[(
ρfĜ

T
ccPcP

H
c Ĝ∗

cc

)
R−1

c + Inc

])
(5)

and the covariance matrix Rc is described by

Rc = E

[(
yc −

√
ρfĜ

T
ccPcxc

)(
yc −

√
ρfĜ

T
ccPcxc

)H
]

= ρfG̃
T
ccPcP

H
c G̃∗

cc +

C∑
i=1,i̸=c

ρfĜ
T
icPiP

H
i Ĝ∗

ic

+

C∑
i=1,i̸=c

ρfG̃
T
icPiP

H
i G̃∗

ic + σ2
wInc

(6)

where xc and wc are statistically independent. Finally, sum-
rate of the total clustered network is given by

Rcl =

C∑
c=1

Rc. (7)

III. PROPOSED SEQUENTIAL MULTIUSER SCHEDULING
AND POWER ALLOCATION

In this section, we detail the proposed SMSPA scheme for
multiuser scheduling and power allocation in clustered CF
networks, which is outlined in Fig. 1. In particular, the SMSPA
scheme employs an enhanced greedy algorithm for multiuser
scheduling using the method presented in [12], in conjunction
with a power allocation algorithm based on the GA method to
maximize the sum-rate of the network. Unlike the enhanced
greedy algorithm of the reference [13] which used equal power
loading, we perform both scheduling and power allocation.
Specifically, we first consider equal power loading and then
employ the proposed greedy multiuser scheduling to schedule
the best set using the sum-rate criterion and after that GA
power allocation algorithm is employed.

Scheduling the 

1st UE set

Equal power 

loading

Scheduling the 

2nd UE set

Scheduling the 

(K-n+1)th UE

 set

Sum-rate 

comparison
Gradient ascent 

power allocation

Fig. 1. Block diagram of the proposed SMSPA resource allocation.

A. Proposed ESG multiuser scheduling algorithm

In cluster c including Uc = {1, . . . ,Kc} as UEs and Mc

number of APs (Kc > Mc), in order to schedule a specific
number of UEs such as nc so that nc ≤ Mc, we first adapt
a greedy method similar to the approach applied in [14] to
select the first set of UEs. However, unlike [14] we apply the
MMSE precoder instead of the ZF precoder so that we can
obtain a better performance and refine the search algorithm.
In addition, the number of selected UEs is prespecified. For the
selected set Snc

which results in a row-reduced channel matrix
Gcc (Snc

), we aim at obtaining the solution to the optimization
problem

max
Snc

RMMSE (Snc)

subject to ∥Pc (Snc
)∥2F ≤ P.

(8)

where RMMSE (Snc
) is defined as the sum-rate with the

MMSE precoder when Snc is the set of intended users, P
is upper limit to the covariance matrix of the received signal,
trace [Cx] ≤ P , and Pc (Snc

) = WcDc is the precoding
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matrix including the normalized MMSE weight matrix Wc ∈
CMc×nc and the power allocation matrix Dc defined as

Dc =


√
p1 0 · · · 0
0

√
p2 · · · 0

...
... · · ·

...
0 0 · · · √

pnc

 = diag (dc)

,dc =
[√

p1
√
p2 · · · √

pnc

]T
. (9)

We consider GA power allocation as described in Section III-B
and the first set of UEs Snc(1) is obtained using the first stage
of Algorithm 1. In order to assess more sets of the users so that
we can approach the optimal set achievable by the exhaustive
search method, we consider Snc(2) as the second set of UEs
which is different from the set Snc(1) in only one UE. To
obtain Snc(2), we remove the UE which has the lowest channel
power among the UEs of the set Snc(1) shown by ur and
replace it with the UE which possesses the most power among
the UEs other than the set Snc(1) shown by ua. Thus, we can
show the removed and added UEs as follows, respectively,

ur(1) = argmin
u∈Snc(1)

gH
u gu (10)

ua(1) = argmax
u∈Ure(1)

gH
u gu (11)

where gu =
[
g
1,u

· · · g
Mc,u

]T
is the channel vector to UE u,

and Ure(1) = Uc \ Snc(1) shows the remaining UE set other
than Snc(1). The same process is done for the second set of
UEs to find the third set. We continue to find new sets until
we obtain Kc −nc sets of UEs beside the first set. We obtain
the ith selected set of UEs and the ith remaining set of UEs
as follows, respectively,

Snc(i) =
(
Snc(i−1) \ ur(i−1)

)
∪ ua(i−1) (12)

Ure(i) = Ure(i−1) \ ua(i−1) (13)

where i ∈ {2, · · · ,Kc − nc + 1}. Finally, the desired set Sncd

among the obtained sets, is the set which results in the highest
sum-rate Rc

(
Snc(J)

)
, J ∈ {1, · · · ,Kc − nc + 1} as derived

in (5).

Algorithm 1: Proposed C-ESG Scheduling Algorithm.

1 j=1 % first stage
2 set l = 1;
3 find a user such that
4 u1 = argmax

u∈Uc

gH
u gu;

5 set U1 = u1 and denote the achieved rate
6 RMMSE (U1);

7 while l < nc do
8 l = l + 1;
9 find a user ul such that

10 ul = argmax
u∈(Uc\Ul−1)

RMMSE (Ul−1 ∪ {u});

11 set Ul = Ul−1 ∪ {ul} and denote the rate
12 RMMSE (Ul);
13 If RMMSE (Ul) ≤ RMMSE (Ul−1), break
14 l = l − 1;
15 end
16 Snc(j) = Ul;
17 compute: Rc

(
Snc(j)

)
;

18 Ure(j) = Uc \ Snc(j);
19 ur(j) = argmin

u∈Snc(j)

gH
u gu;

20 ua(j) = argmax
u∈Ure(j)

gH
u gu;

21 for j = 2 to Kc − nc + 1 do
22 Snc(j) =

(
Snc(j−1) \ ur(j−1)

)
∪ ua(j−1);

23 Ure(j) = Ure(j−1) \ ua(j−1);
24 ur(j) = argmin

u∈Snc(j)

gH
u gu;

25 ua(j) = argmax
u∈Ure(j)

gH
u gu;

26 compute: Rc

(
Snc(j)

)
;

27 end
28 Sncd

= argmax
Snc∈Snc(J)

{Rc (Snc
)};

29 Linear MMSE precoding of nc scheduled users

B. GA power allocation algorithm

In Equation (4), the first part of the right hand side is the
desired signal and remaining parts are the terms associated
with imperfect CSI, inter-cluster interference and the noise.
Therefore, by applying the power allocation, we rewrite the
estimated received signal at the cluster c as follows

yc =
√
ρfĜ

T
ccWcDcxc +

√
ρfG̃

T
ccPcxc

+

C∑
i=1,i̸=c

√
ρfG

T
icPixi +wc

(14)

For sum-rate maximization, we combine the received signal of
the UEs using a linear receiver a = 1√

Kc
1T
Kc

, where 1Kc
is a

1×Kc vector of all 1 entities so that aHa = 1 and we obtain a
simpler expression for sum-rate [15]. After finding the power
loading factors using the simplified sum-rate expression, we
apply the obtained power allocation matrix in the sum-rate
expressions defined in equations (2) and (5) to determine the
sum-rates.

Thus, the combined received signal and the power ratio of
the desired part of the signal to the interference and noise
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(SINR) are given as follows, respectively,

aTyc =
√
ρfa

T ĜT
ccWcDcxc +

√
ρfa

T G̃T
ccPcxc

+

C∑
i=1,i̸=c

√
ρfa

TGT
icPixi + aTwc

(15)

SINR =
ρf
σ2
w

aT ĜT
ccWcDcD

H
c WH

c Ĝ∗
cca

aTZa
(16)

where

Z = G̃T
ccPcP

H
c G̃∗

cc +

C∑
i=1,i̸=c

ρfG
T
icPiP

H
i GT

ic + I (17)

Assuming Gaussian signaling, the rate expression is obtained
by 1

2 log2 (1 + SINR). Accordingly, the sum-rate expression is
given by

SR =
1

2
log2

[
1 +

ρf
σ2
w

aT ĜT
ccWcDcD

H
c WH

c Ĝ∗
cca

aTZa

]
. (18)

Equation (18) is similar to 1
2 log2 (1 + bx) where b =

ρf

σ2
waTZa

and x = aT ĜT
ccWcDcD

H
c WH

c Ĝ∗
cca which is a monotoni-

cally increasing function of x, b > 0. Thus, we can maximize
x which is equivalent to the sum-rate using the following
problem

max
dc

(
aT ĜT

ccWcdiag (dc) diag (dc)
H
WH

c Ĝ∗
cca

)
subject to ∥Wcdiag (dc)∥2 ≤ P.

(19)

Since the objective function x is scalar, trace(x) = x. There-
fore, by taking the derivative of the objective function with
respect to the power loading matrix Dc and using the equality
∂trace(AB)

∂A = B⊙I where A is a diagonal matrix and ⊙ shows
the Hadamard product, we obtain

∂x

∂Dc
= 2

(
WH

c Ĝ∗
ccaa

T ĜT
ccWcdiag (dc)

)
⊙ I (20)

We can use a stochastic GA approach to update the power
allocation coefficients as follows

dc (i) = dc (i− 1) + λ
∂x

∂Dc
= dc (i− 1)

+ 2λ
(
WH

c Ĝ∗
ccaa

T ĜT
ccWcdiag (dc (i− 1))

)
⊙ I

(21)

where i and λ represent the iteration index and the positive
step size, respectively. Before running the adaptive algorithm,
the transmit power constraint should be satisfied so that
∥Wcdiag (dc)∥2F = ∥Pc∥2F ≤ P . Therefore, the power scaling

factor η =
√

trace(PcPH
c )

trace(Wcdiag(dc.dc)WH
c )

is employed in each
iteration to scale the coefficients properly. The adaptive power
allocation is summarized in Algorithm 2 where It iterations
are used.

Algorithm 2: GA Power Allocation Algorithm for
Sum-Rate Maximization.

1 Input Gcc,Pc,Wc, a and λ
2 dc (1) = 0
3 for i = 2 to It do
4 ∂x

∂Dc
=

2
(
WH

c Ĝ∗
ccaa

T ĜT
ccWcdiag (dc (i− 1))

)
⊙ I;

5 dc (i) = dc (i− 1) + λ∂x(ε)
∂Dc

;
6 if trace

(
Wcdiag (dc (i) .dc (i))W

H
c

)
̸=

trace
(
PcP

H
c

)
then

7 η =
√

trace(PcPH
c )

trace(Wcdiag(dc(i).dc(i))WH
c )

;
8 dc (i) = ηdc (i);
9 end

10 end

IV. SIMULATIONS

In order to assess the proposed SMSPA resource allocation
scheme, we compare the sum-rate of the networks that use
the proposed ESG, standard greedy (SG), exhaustive search
(ES) or WSR user scheduling techniques and the proposed
GA power allocation or equal power loading (EPL). Note
that we have adapted the WSR technique proposed in [9]
to the clustering method we have implemented so that the
WSR of the UEs in each cluster supported by the corre-
sponding APs is maximized. The considered CF network is
a squared area with the side length of 400 m equipped with
M randomly located APs and K uniformly distributed UEs.
Applying network-centric clustering, we have considered C
= 4 non-overlapping clusters, where cluster c includes Mc

randomly located APs and Kc uniformly distributed UEs and
the power allocation is performed using GA algorithm. The
large scale coefficient in CF channel coefficient is modeled as
βm,k = PLm,k × 10

σshzm,k
10 where 10

σshzm,k
10 is the shadow

fading with σsh = 8dB, zm,k ∼ N (0, 1), and PLm,k is the
path loss modeled as [16]

PLm,k =


−D − 35 log10 (dm,k) , if dm,k > d1

−D − 10 log10

(
d1.51 d2m,k

)
, if d0 < dm,k ≤ d1

−D − 10 log10
(
d1.51 d20

)
, if dm,k ≤ d0

(22)
where dm,k is the distance between the mth AP and kth UE
and D is

D = 46.3 + 33.9 log10 (f)− 13.82 log10 (hAP )

− [1.11 log10 (f)− 0.7]hu + 1.56 log10 (f)− 0.8 (23)

where f = 1900MHz is the carrier frequency, hAP =15m,
hu =1.5m are the AP and UE antenna heights, respectively,
d0 = 10m and d1 =50m. If dm,k ≤ d1 there is no shadowing.

In Fig. 2(a), the sum-rate performances of the proposed
SMSPA scheme is assessed with the ESG scheduling algorithm
using EPL or the GA power allocation when ZF or MMSE
precoders are applied. While the sum-rates are increasing with
the increase in the signal-to-noise ratio (SNR), the MMSE
precoder outperforms the ZF precoder. In addition, the GA

1487



power allocation yields significant performance improvement
at low-to-medium SNR values.

Fig. 2(b) shows a comparison of different resource alloca-
tion techniques when the MMSE precoder is used. We employ
a network with a small number of UEs while half of the
UEs are scheduled so that we can show the results for the
ES method as well as other methods. We notice that the
proposed SMSPA resource allocation which has used the ESG
and GA algorithms has outperformed other approaches and
in the CF network the performance is close to that of the
optimal ES method. As expected and according to Equation
(4), CF shows better performance than that of the CLCF
network because of the extra interference terms caused by
other clusters. We clarify that Fig. 2 is plotted according
to the sum-rate expressions of equations (2) and (5) and
simplified sum-rate equation of (18) is used only to derive
the power loading factors. However, as shown in Table I, the
computational cost of the proposed SMSPA scheme and the
signaling load as the number of channel parameters for CLCF
network are substantially lower than CF.
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Fig. 2. Performance of resource allocation schemes, (a): Comparison of the
proposed SMSPA technique in CF networks for ZF and MMSE precoders with
the system which has implemented the proposed ESG algorithm and equal
power loading (EPL) (M = 64, K = 128, n = 24), (b): Comparison of the
different resource allocation techniques in CF and CLCF networks adapting
GA power allocation when MMSE precoder is used (M = 64, K = 16,
n = 8).

TABLE I
COMPUTATIONAL COMPLEXITY OF THE PROPOSED SMSPA SCHEME IN

FLOATING POINT OPERATIONS AND THE SIGNALING LOAD IN PARAMETERS
FOR CF AND CLCF NETWORKS WHEN M = 64, K = 128 AND n = 64.

Network CF CLCF
Signaling load 24576 6144
Computational cost 1.3632× 109 69.354× 106

V. CONCLUSIONS
This work has investigated resource allocation and sum-rate

performance of the CF and the clustered CF networks with ZF
and MMSE precoders. An SMSPA resource allocation scheme
is developed that is based on ESG multiuser scheduling and
GA power allocation algorithms. Simulations have shown that

the proposed SMSPA scheme has outperformed the existing
methods and using the PA algorithm has also considerably
improved the network performance compared with the EPL
case. Additionally, in the case of the network clustering,
a substantial computational complexity is saved using the
proposed SMSPA scheme and the signaling load is much
lower.
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