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Abstract—Decentralized deep learning (DL) based resource al-
location (RA) in communication networks guarantees scalabil-
ity and higher communication bandwidth efficiency compared
to centralized RA. Although the RA is decentralized in such ap-
proaches, the policies are mostly trained in a centralized manner.
In this paper, we investigate a decentralized model-free training
approach based on zeroth-order optimization methods. Each user
trains its individual policy—possibly with a unique structure—
to guarantee the maximum global utility, e.g., sum rate (SR)
of users. More importantly, during the training, the users need
to share only scalar quantities with their neighbors, avoiding
a large communication overhead. The training is also robust
against a certain level of asynchrony between the users. The
proposed approach relaxes the need for a computationally com-
plex central server and offers the possibility for (re)training in
dynamic environments in a model-free manner using the com-
putational power at the edge. Numerical experiments show a
competitive performance compared to centralized and federated
training approaches.

Index Terms—Decentralized training, decentralized resource
allocation, deep learning, model-free, asynchronous, communica-
tion networks

I. INTRODUCTION

Deep learning (DL) based resource allocation (RA) in com-
munication networks has changed the paradigm of direct de-
sign of RA techniques to devising efficient policies, e.g., deep
neural networks (DNNs), and optimization methods to train
such policies in order to achieve simplicity in implementation
and efficiency in performance compared to the conventional
approaches [1].

DL based RA consists of two main stages: the training stage
and the inference stage. In the training stage, the policy learns
RA via maximizing an appropriate reward function in either a
supervised or unsupervised manner, by different policy train-
ing approaches, e.g., reinforcement learning (RL) [2]–[14].

Once the policy is trained, in the inference stage, RA is
performed in a centralized or decentralized manner depending
on whether there is a server assigned to perform such a task
or each user performs RA by exploiting its local policy [2],
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[6], [15]. In this stage, RA approaches are of interest that are
fast, incur less communication overhead, and can generalize,
e.g., on different communication network sizes.

While there has been extensive research on DL based RA
methods with a decentralized inference stage, the training is
mostly done in a centralized manner [6], [15]. Decentralized
training, though, can have several advantages: online training
of policies after pre-training helps the policies to capture real-
world parameters of the communication network in real-time,
e.g., channel distribution, number of users, and user demands.
Such online training may also be repeated once in a while dur-
ing the operation to tackle drifts from the initial status of the
communication network, e.g., channel distribution drift when
the channel is nonstationary [16], [17]. Since the measure-
ments, e.g., for channel estimation, are done locally by each
user, sending the local measurements to a central server to per-
form such (re)training tasks incurs a communication overhead
and additional delays. Moreover, a server performing such a
training task needs to have enough computation and communi-
cation capacity, which may be absent in real-world scenarios.

Learning over graphs and federated learning (FL) [18], [19]
are two optimization frameworks that recently have received
a lot of attention in distributed learning. In distributed pol-
icy training for RA [20], [21], a server is mostly required to
lead the training and to guarantee synchrony between the users.
Also, these approaches mostly rely on sharing parameters such
as gradient vectors between the users which again incurs a
communication overhead. Therefor, in this paper, a model-free
asynchronous decentralized training approach is presented for
the existing DL based RA methods. Each user has an individ-
ual policy and needs to send only scalar quantities to other
users once in a while, avoiding communication overhead.

II. SYSTEM MODEL

We consider N users (communication links) each equipped
with a transmitter and a receiver. The transmit power of user
i is denoted by pi ∈ [0, pmax

i ], the ith element of the vec-
tor p ∈ PC , where PC := {p = (p1, . . . , pN ) ∈ RN | pi ∈
[0, pmax

i ], ∀i ∈ [N ] := {1, . . . , N}}. The direct channel be-
tween the transmitter and receiver of user i is denoted by hii,
while the interference channel between the transmitter of user
j and the receiver of user i is denoted by hij . All the channel
coefficients define the full channel matrix H ∈ CN×N with
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hij its element in the ith row and jth column. The channel has
a distribution DH with support ΩH . The additive white Gaus-
sian noise in each receiver is assumed to be independent and
identically distributed (IID) with power σ2

n, which is assumed
to be constant and the same in all receivers.

The achievable data rate of user i, Ri : CN×N ×PC → R+,
can then be written as,

Ri(H,p) := log2 (1 +
|hii|2pi

σ2
n +

∑
j ̸=i |hij |2pj

). (1)

We consider an individual policy e.g., a DNN, for user i ∈ [N ]
as ϕi : Rmi × Θi → R+. The policy ϕi(si,θi) outputs the
resource allocated to user i, e.g., transmit power, subchannel,
etc. The policy input is the vector si ∈ Rmi including local
measurements of user i, and the policy parameter vector is
θi ∈ Θi ⊂ Rni , including e.g., DNN weights and biases. Note
that each user i may have its unique local measurements si,
which depend on the channel H . The vector si may contain
the direct channel, interference power, noise power, etc. (cf.
Section IV).

The RA considered here corresponds to the following opti-
mization of the policy parameters θi to maximize the global
utility, equal to the sum of individual utilities U =

∑N
i=1 Ui,

while satisfying individual box constraints:

θ⋆ ∈ argmax
θ∈Θ

N∑
i=1

EH∼DH
{Ui(H,ϕ(H,θ))} (2)

subject to ϕi(si,θi) ∈ Ci, ∀i ∈ [N ],∀H ∈ ΩH .

Here θ := (θ1, . . . ,θN ) ∈ Rn:=
∑

ni , ϕ(H,θ) :=
(ϕ1(s1,θ1), . . . , ϕN (sN ,θN )), and Ci is the resource box
constraint. Also, Ui is the utility function of user i, e.g.,
Ui = Ri(H,ϕ(H,θ)) or Ui = logRi(H,ϕ(H,θ)).

Once the policies are trained, each user monitors its local
policy output to adjust its resource accordingly, e.g., pi =
ϕi(si,θ

⋆
i ) with Ci = [0, pmax].

III. PROPOSED DECENTRALIZED TRAINING

The training in DL based RA is mostly done in a central-
ized manner performed by a central server that synchronously
gathers all the necessary information, i.e., the vectors si and
H , and performs updates on θ until convergence. Define

fϕ(H,θ) :=
∑N

i=1 Ui(H,ϕ(H,θ))

f̄ϕ(θ) := EH∼DH
{fϕ(H,θ)}.

The stochastic gradient ascent (SGA) method can be used to
iteratively update the policy parameter θ by θk+1 = θk +
γk 1

B

∑B
ℓ=1 ∇fϕ(Hℓ,θk). Here, k is the iteration number, B

is the size of a minibatch of channel instances drawn from the
distribution DH over B time instants, and γk is a diminishing
stepsize to guarantee convergence.

One of the required quantities in SGA is the gradient vector
which should be known to the optimizer. Note that this vec-
tor has high dimensionality, i.e., n =

∑
ni. Hence, sharing

this vector quantity between the users and the server, or the
users with their peers, imposes a large communication over-
head. Moreover, deriving such a gradient vector requires ex-
plicit knowledge about the utility function and all the param-

eters involved, and cannot consider unknown nonidealities in
the communication network such as nonlinearities in the trans-
mitters and the receivers [4].

Zeroth-order optimization approaches [22] optimize the pol-
icy parameters by only evaluating function values. In RA, this
function evaluation may correspond to measuring, e.g., user
data rates in a model-free manner (cf. e.g., [4]), involving all
unknown nonidealities. Before employing the zeroth-order op-
timization approach, a required assumption is as follows:

Assumption I. The policies ϕi(si, ·), i ∈ [N ], are continuous
for all si ∈ Rmi , e.g., they are continuous DNNs.

A so-called smoothed approximation function f̄ϕ,µ : Rn →
R+ is then defined as
f̄ϕ,µ(θ) := Eu{f̄ϕ(θ + µu)} where u ∼ N (0, I), µ > 0.

(3)
This function has interesting properties, two of which are high-
lighted as follows [22]:

Proposition III.1 (smoothed approximation function f̄ϕ,µ).
(i) Let f̄ϕ be continuous and µ > 0, then f̄ϕ,µ is Lipschitz

differentiable;

(ii) ∇f̄ϕ,µ(θ) := Eu{
f̄ϕ(θ+µu)−f̄ϕ(θ)

µ u}.

Note that the name smoothed approximation function is due
to Proposition III.1(i), as it indicates that even if the original
function f̄ϕ is not differentiable, the function f̄ϕ,µ is Lipschitz
differentiable, i.e., a smoothed approximation of the original
function. Moreover, Proposition III.1(ii) also defines the gra-
dient of the smoothed approximation function employing ex-
pected function values over the random vector u. This gradient
is used in the zeroth-order update of the parameter θ, i.e.,

θk+1 = θk + γk∇̂f̄ϕ,µ(θk), (4)
where ∇̂f̄ϕ,µ is an empirical estimation of ∇f̄ϕ,µ by one or a
minibatch of the random vectors u. The zeroth-order update
rule (4) is convergent under Assumption I and also some other
regularity conditions, up to a certain precision dependent on
the parameter µ [22, Sec. 7].

A. Decentralized updates
In the zeroth-order update rule (4), the estimated gradient

∇̂f̄ϕ,µ is evaluated at θk by measuring the function values of
f̄ϕ at θk and at its randomly perturbed version θk + µuk.
Note that the function f̄ϕ can be estimated using minibatches
of channel instances over a period of time. Hence, the update
rule (4) is recast as

θk+1 = θk + γkαkuk, (5)

αk :=
EB2

H {fϕ(H,θk + µuk)} − EB1

H {fϕ(H,θk)}
µ

where two minibatches of channel instances with size B1 and
B2 are used and EBi

H {·} denotes the average over the mini-
batch with size Bi. Two different minibatches allow the users
to practically measure the utility function for θk and θk+µuk

in two distinct time periods. To do so, each user estimates its
own average utility in two successive time periods to form

αk = 1
µ

∑N
i=1 d

k
i (6)

1495



Algorithm 1 Proposed decentralized training
Initialize: γ0 > 0 and γ̃ > 0 for γk = γ0/(k+1)γ̃ ,

B1 > 0, B2 > 0, µ > 0, θ0
i ∀i ∈ [N ]

each user i asynchronously performs:
for k = 0, 1, . . . ,

1: continuously receive dj j ̸= i from the other users
2: measure EB1

H {Ui}
3: draw a random vector uk

i ∼ N (0, I)
4: update the policy ϕi(·,θk

i + µuk
i )

5: measure EB2

H {Ui}
6: calculate dki using (6) and send it to the other users
7: perform update on θk

i using (8)
8: update the policy ϕi(·,θk+1

i )

where dki := EB2

H {Ui(H,ϕ(H,θk + µuk))}
− EB1

H {Ui(H,ϕ(H,θk))}.
The scalar quantity αk can be made available at all the users
by message passing, i.e., each user sending its own estimate
dki as a scalar to all other users. Once αk is known at all the
users, the update rule (5) can be recast as

θk+1
i = θk

i + γkαkuk
i ∀i ∈ [N ],

= θ0
i +

1
µ

∑k
t=0

∑N
j=1 γ

tdtju
t
i, (7)

where θi is defined in (2). By the decentralized update rule
in (7), the users only share one scalar quantity αk every B :=
B1 +B2 time instants.

B. Asynchronous updates

We also consider the case where the users have asyn-
chronous local updates and transmissions during the decen-
tralized training. It is assumed that the users have the same
update frequency, i.e., it takes an equal amount of time for
each user to have B samples. Without loss of generality, we
sort the users from earliest to latest, hence, user 1 has its up-
dates earlier than any other user j > 1. The asynchronous
updating is then shown in Fig. 1. In this setting, the local
update for each user i can be specified as

θk+1
i = θk

i + 1
µ

[
γk

∑
j≤i d

k
ju

k
i + γk−1

∑
j>i d

k−1
j uk−1

i

]
.

(8)
Note that user i needs to form αk from all dki ∀i ∈ [N ] as
in (7). However, at the time of the update, the slower users
j > i have not yet sent their updates on dkj . Instead, user i

can use dk−1
j , j > i from the slower users, received at the

previous iteration k − 1. Moreover, the updates dk−1
j corre-

spond to uk−1
i as this is the case in (7). By setting d−1

j = 0

for j > i and u−1
i = 0, the update rule (8) has the same

summands as the update rule in (7), except for the summands
corresponding to dkj , j > i that are not yet received by user i at
iteration k. Note that to guarantee an accurate enough gradient
estimation, all the users should have their parameters θk

i and
the perturbed versions θk

i + µuk
i at the same time—or with

a small misalignment—in the function fϕ in (5). Hence, as
an assumption, we require to have a bounded maximum mis-

Figure 1: A 3-user scenario with the global time t. The bullets
are the update moments of the users. Each user needs B =
B1 + B2 samples over B time instants in each iteration. The
vertical arrows represent message passing between the users.
Each user sends its dki to the other users asynchronously. User
2 uses dk−1

3 , dk1 , and dk2 in its update (8).

alignment between the users, i.e., if B1 = B2, the maximum
misalignment requires to be less than B/2 time instants.

Each user i also needs to know if the received dj belongs
to the current iteration k or the previous iteration k − 1. This
can be simply deduced in each user based on whether dj is
received during or after the first B1 samples (cf. t′i in Fig. 1).

The proposed training is summarized in Algorithm 1. Note
that although Ui depends on all the policy parameters θ and
the random vectors u, each user only needs to measure its
own average utility without knowing these parameters. For in-
stance, if the user utility is a function of its data rate, this mea-
surement may be performed by estimating the direct channel
and the received interference plus noise power in (1) or by any
other data rate estimation method [4]. Moreover, the local poli-
cies may be different after convergence, i.e., θi ̸= θj , i ̸= j,
providing more flexibility for the decentralized RA to reach
the maximum global utility.

C. Connected graph

The proposed approach can be extended to the case where
each user i only communicates with its neighbors Ni ⊆ [N ]
instead of with all the users. The network is represented by
a graph, with vertices representing the users and edges with
values 0 or 1, specifying if the corresponding users are con-
nected or not. The underlying graph is connected, i.e., any two
vertices are linked in both directions either directly or by in-
termediate vertices. In this case, each user i sends its measure-
ments di with a timestamp Ti and a user ID to its neighbors.
The users save the received quantities in their buffer Bi and
send these quantities to their neighbors in the next commu-
nication instant. The buffer is large enough so each user can
save the scalars dj from all the users in the network. Also, the
old entries are discarded when the buffer is full. The update
rule of (8) is then extended to

θk+1
i = θk

i + γk

µ

∑
j∈Bi

d
T i
j (k)

j u
T i
j (k)

i , (9)

where T i
j (k) is the timestamp of user j available at user

i at iteration k. Note that T i
j (k) ≤ k and T i

i (k) = k
for all i ∈ [N ]. Moreover, each user i has a second
buffer for saving its own generated perturbation vectors
{uk

i ,u
k−1
i , . . . ,uk−Dmax

i }, with Dmax as the maximum de-
lay in the graph.
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Figure 2: Performance comparisons with the centralized and
FL-based approaches, in a 5-user scenario.
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Figure 3: Communication overhead comparisons with the cen-
tralized and FL-based approaches, in a 5-user scenario.

IV. NUMERICAL EXPERIMENTS

We consider a 5-user network with independent channel co-
efficients hi,j ∼ N (0, 1) ∀i, j ∈ [5]. The resource allocation
task considered in the simulations is power allocation, i.e.,
pi = ϕi(si,θ

⋆
i ), with the user data rate as its utility. In the

experiments, we set pmax = 10, σ2
n = 0.5, µ = 1, γ0 = 1,

γ̃ = 0.5, and B = 100 with B1 = B2 = 50.
Each user has a DNN with 3 hidden layers and {4, 30, 30,

1} neurons respectively. As the input of the DNN, each user i
measures the vector si = (R, T ,G,P), including the received
noise plus interference power from all the other users (the de-
nominator in (1)), the transmitted interference power |hji|2pi
to each user j separately, the single direct channel |hii|2, and
the previous transmit power pi, respectively. These inputs are
among the inputs that [6], [20], [23] have used for their poli-
cies. The transmitted interference power can be available at
each user by message passing with the most affected neigh-
bors. The power range [0, pmax

i ] is enforced by the sigmoid
activation function at the DNN output layer. We consider two
scenarios for the proposed method, namely the first scenario
with a fully connected network and the second scenario with
a connected network where the network graph is randomly
generated with a maximum size of 2 for Ni, i ∈ [N ].

The proposed approach is compared against two bench-
marks, namely the centralized training approach which uses
first-order information i.e., the exact gradient, of the reward
function (2) to perform updates by the Adam [24] optimizer,
and FL-based approach [20] where the users exchange their
parameters θi with a server every I iterations to reach a con-
sensus θ1 = · · · = θN . We report the asynchrony level by
the maximum time difference between the users as a percent-
age of the batch size B. Figs. 2 and 3 show the performance
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Figure 4: Performance of the proposed approach with different
batch sizes B, in a 5-user scenario.
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Figure 5: Performance comparisons with the centralized train-
ing in different asynchrony levels, in a 5-user scenario.

of the proposed decentralized approach compared to the two
benchmarks versus the number of channel instances (samples).
The proposed approach reaches the same performance with a
large reduction in communication overhead. Fig. 4 shows that
smaller batch sizes are preferable as there are more updates
in step 7 of Algorithm 1 in the same time period compared
to when larger batch size is used. Increasing the asynchrony
level, as in Fig. 5, decreases the performance, yet, the proposed
approach shows reasonable robustness against asynchrony. To
evaluate if users have different policies after convergence, we
perform the proposed training when the users have different
path loss values. In the inference stage, the achieved sum rate
(SR) is then evaluated when either each user uses its own pol-
icy or the trained policies are randomly assigned to the users.
As apparent from Table I, each user policy has learned the
unique communication status of the user, which indeed results
in a higher SR.

The proposed approach is also evaluated for larger com-
munication networks when the users are synchronous. With
results provided in Table II, it is evident that the proposed de-
centralized approach can perform the training well also when
the communication network is larger.

V. CONCLUSION

In this paper, we have presented a training approach that
can be combined with the existing decentralized DL based
RA methods, to train their policies in a decentralized asyn-
chronous and model-free manner. With the proposed approach,
the users cooperatively train their policies when they are linked
by a fully or partially connected graph. The studied asynchrony
addresses the misalignment between the users in their updates
when they all have the same update frequency. Other sources
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Table I: Performance comparisons with four random policy
assignments in different asynchrony levels when N = 5.

Sum Rate (bits/s/Hz)
async. no rnd. rnd. 1 rnd. 2 rnd. 3 rnd. 4
0% 4.34 1.81 1.12 2.22 2.05
10% 4.63 3.67 2.29 2.04 2.86
25% 3.96 3.71 2.98 3.17 3.47
50% 3.82 2.06 1.87 3.26 3.21

Table II: Performance comparisons after convergence.

Sum Rate (bits/s/Hz)
# of users proposed centralized Adam
5 4.95 5.12
10 5.31 5.35
15 5.63 5.71

of asynchrony may be interesting to investigate as well. A the-
oretical study of convergence behavior is also a direction for
future research.
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