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Abstract—This work builds upon the concept of asynchronous,
in-network processing with probabilistic graphical model (PGM)-
based inference algorithms. Specifically, this work studies the
problem of efficient mapping of the PGM to wireless sensor net-
work (WSN) terminals, exchanging messages in a (probabilistic)
asynchronous manner. The PGM considered stems from Gaussian
belief propagation (GBP), which is versatile and powerful, able
to describe many known algorithms. It is shown that node
clustering methods based on spectral clustering outperform
autonomous clustering and k-means, in most cases, in terms of
convergence rate, for given probabilities of WSN terminals being
active. Interestingly, it is also found that fast convergence rate
can be achieved, which is independent of the mapping method
applied. Finally, optimization of WSN communication energy
consumption is also addressed with spectral clustering.

Index Terms—GBP, PGM, WSN, Spectral Clustering, Asyn-
chronous Inference

I. INTRODUCTION

Probabilistic graphical models (PGM) have the power to
express a variety of powerful algorithms including (but not
limited to) Expectation-Maximization, Viterbi and Kalman
filtering [1], [2]. Of particular importance is the Gaussian Be-
lief Propagation (GBP) algorithm, which can solve problems
relevant to clustering, minimum mean square error (MMSE)
estimation and systems of linear equations [3], [4].

Inference algorithms, such as sum-product (also known
as belief propagation) or max-product offer inference by
exchanging messages on carefully crafted graphs that encode
(in)dependencies of the variables of interest, modeled as
random variables [5], [6]. A special case of such graph is
the (bipartite) factor graph of Fig. 1, with edges only between
factors (rectangles in Fig. 1) and variables (circles in Fig. 1)
and the inherent probability distribution encoded by a product
of factors [7], [8].

Such inherent message passing in PGMs is amenable to
distributed processing; work in [9] showed that inference al-
gorithms - facilitated by PGMs - can be distributed in wireless
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Fig. 1: PGM mapping to WSN terminals example.

sensor networks (WSN), ambiently powered and specific in-
network inference examples were realized in embedded WSNs.
The key concept was asynchronous message passing, allowing
for WSN terminals to re-use existing messages, especially
when lack of sufficient energy (or any other reason) prohibited
communication in parts of the wireless network.

This work builds upon the concept of asynchronous, in-
network inference and studies the problem of efficient mapping
of the PGM to WSN termninals; the goal is to accelerate
convergence, while minimizing energy communication con-
sumption among WSN terminals, operating in a (probabilistic)
asynchronous manner.

II. GBP & AFFINE MODEL PRELIMINARIES

A. GBP under High-Order Factorization

Gaussian Belief Propagation (GBP) [3] is a special case
of the sum-product algorithm where the distributions are
Gaussian. The sum-product algorithm is a message passing
algorithm that operates in undirected graphical models or fac-
tor graphs [1]. Given a probability distribution function, sum-
product computes -either exactly or approximately- various
marginal distribution functions using message passing between
the graph’s nodes and following a few simple computational
rules [7], [8].
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Let x ∈ Rn be a random Gaussian vector. Its probability
density function (pdf) in information form follows:

p(x) ∝ exp

{
−1

2
x⊤Jx+ h⊤x

}
, (1)

where J and h are the precision matrix and potential vec-
tor, respectively. A general factorization of the aforemen-
tioned matrix and vector is considered in [10], and as
shown, GBP under high-order factorization utilizes factor-
to-variable messages m

(l)
gj→xi(xi) at each iteration, which

are proved to be valid Gaussian pdfs, with m
(l)
gj→xi(xi) =

N
(
xi;µ

(l)
gj→xi , 1/ν

(l)
gj→xi

)
. In addition, the algorithm out-

come, i.e., the beliefs of the random variables, are valid Gaus-
sian probability density functions.1 With proper initialization,
precision messages ν(l)gj→xi can be guaranteed to converge; µ(l)

stacks all mean messages µ(l)
gj→xi at iteration (l), and GBP can

be reduced to the synchronous affine fixed point problem:

µ(l) = Aµ(l−1) + c, (2)

where A and c depend on the converged precision messages.2

B. Solving Systems of Linear Equations

Assume that the WSN is designed to solve linear equations:

Mx = s, (3)

where x ∈ Rn, M ∈ Rm×n (m ≥ n) a full rank matrix and
s ∈ Rm (m is the number of factors and n the number of
variables), for which the least squares solution is [11]

x =
(
M⊤M

)−1
M⊤s. (4)

GBP can be utilized for the following Gaussian distribution:

p(x) ∝ exp

{
−1

2
x⊤M⊤Mx+ s⊤Mx

}
, (5)

where inference of the mean value will yield the desired
problem solution [3]. Using matrix M, the corresponding
PGM can be created by connecting variable and factor nodes
for each non-zero element of M.

C. Message Passing Probabilities of GBP in WSNs

Messages from factor node gj to variable node xi depend on
the messages that were sent to the neighboring variable nodes
of the factor node gj , except xi. Thus, Ci,j is defined as the set
that contains the WSN terminals that gj , xi and neighboring
variable nodes of gj belong to. Also, pc is the probability of a
WSN terminal c being active. Thus, the probability of message
mgj→xi being updated properly follows:

pupdate
mgj→xi

=
∏

c∈Ci,j

pc. (6)

Vector p̃ contains elements pupdate
mgj→xi

for all (i, j) ∈ E (the set
of PGM edges), arranged first on i and then on j, i.e., contains
one probability element for each edge of the PGM graph.

1Analytical expressions for all quantities can be found in [10].
2Similar model is possible for parallel update of precisions and means.

D. (A)synchronous Affine Fixed Point (AFP) Problem

Let real vectors x(0), b ∈ Rn and real square matrix A ∈
Rn×n; the following synchronous recursion is defined:

x(l) = Ax(l−1) + b, l = 1, 2, . . . (7)

and b ̸= 0. The solution of this problem, i.e., the fixed point
is denoted by x∗ ≜ liml→∞ x(l−1) = liml→∞ x(l).

Using notation from seminal work in [9], [10], [12], at each
iteration (l) the following diagonal matrix Ψ(l) is defined, with
xk denoting the k-th element of vector x, ∀k ∈ {1, 2, . . . , n}:

Ψ(l)(k, k) =

{
1, if xk is updated at iteration (l),

0, otherwise,
(8)

where Ψ(l) are independent across l. In that way, Eq. (7)
becomes probabilistic asynchronous, as follows:

x(l) = Ψ(l)
(
Ax(l−1) + b

)
+

(
I−Ψ(l)

)
x(l−1)

=
(
Ψ(l)A+ I−Ψ(l)

)
x(l−1) +Ψ(l)b.

(9)

where E[Ψ(l)] ≜ P = diag{p̃}, with p̃ as in Sec. II-C. Notice
that for P = I, Eq. (9) simplifies to the synchronous case of
Eq. (7).

Synchronous AFP Problem: A necessary and sufficient
condition for Eq. (7) to converge is ρ(A) < 1 [11], [13].

Asynchronous AFP Problem: A necessary and sufficient
condition for convergence in the mean sense, i.e., convergence
of liml→∞ E

[
x(l)

]
is ρ(Ā) < 1, where Ā = P(A− I) + I

[10], [14], [15]. In addition, given that ρ(Ā) < 1, a necessary
and sufficient condition for convergence in the mean square
sense, i.e., covariance matrix of the error vector approaches
the all-zero matrix for l → ∞ is ρ(S) < 1, where S =
Ā ⊗ Ā + ((I−P))⊗P)J ((A− I)⊗ (A− I)) [14], [15],
with J = diag(vec(I)) ∈ Rn2×n2

, where ⊗ denotes the
Kronecker product.

III. MAPPING PGM-TO-WSN METHODS

A. Clustering Algorithms

Mapping PGMs to WSN terminals requires first PGM
clustering. Thus, three different clustering algorithms are uti-
lized, namely k-means [16], spectral clustering [17]–[19] and
autonomous clustering [20].

Given an undirected and weighted graph G = (V,E), with
vertex set V = {v1, . . . , vn}, we can define cut [17] of A ⊆ V

to be:

cut(A) =
∑

i∈A,j∈Ā

wij , (10)

where Ā is the complement of A in V and wij represents
the weight between vertices vi and vj . Now, we can define
RatioCut [17] to be:

RatioCut(A1, . . . ,Ak) =

k∑
i=1

cut(Ai)

|Ai|
, (11)
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where A1, . . . ,Ak is a partition of V and |Ai| is the number
of elements in Ai. In the case that all weights are equal
to 1, RatioCut is the sum of normalized number of edges
connecting each cluster with all the others. Its advantage over
simpler cut, is that its minimization, not only gives a clustering
with a small number of edges connecting each cluster with the
others, but also a balanced number of elements per cluster.

Spectral clustering is an algorithm that clusters a graph
into k clusters, by minimizing RatioCut. The solution of
this minimization problem is given by choosing a matrix H
that contains the first k eigenvectors of graph Laplacian L
as columns. This is a real valued matrix and thus, it needs
conversion to a discrete partition. The standard way is to
use the k-means algorithm on the rows of H. More detailed
descriptions of the algorithm can be found in [17]–[19].

Clustering can be performed autonomously, by the WSN
network itself, for the special case of k = 2 clusters/WSN
terminals [20]. Such approach utilizes the AFP problem of
Eq. (7), by setting A = h(L) and b = 0 (i.e., relaxing the
non-zero constraint):

x(l) = h(L)x
(l−1)

, (12)

where L is the graph Laplacian matrix and h(L) is an rth-
order polynomial of L, i.e., h(L) =

∑r
n=0 hnL

n. It is
proved in [20] that for r = 2 and using only algebraic
connectivity, i.e., second smallest eigenvalue λ2 of L, and
largest degree dmax of the graph, a polynomial sufficient to
satisfy h(λ2) = 1, |h(λi)| < 1 ∀i ̸= 2, can be created.
Then, the probabilistic asynchronous updates of Eq. (12) can
converge to (Fiedler) vector v2, i.e., the eigenvector of L
corresponding to eigenvalue λ2. Hence, clustering of nodes
within k = 2 clusters can be derived from y = sign(v2).

B. Node Clustering Approach

In the node clustering approach, the PGM nodes are clus-
tered first and then its edges. Node clustering is performed
utilizing k-means, spectral clustering and autonomous clus-
tering, with different types of inputs. Input of k-means is the
distance matrix D of the graph, with Di,j being the length of
the shortest path between nodes i and j. Using that input and
squared Euclidean distance metric, the nodes of the PGM are
being clustered. Spectral clustering and autonomous clustering
take as input the adjacency matrix of the factor graph (PGM),
treating factor and variable nodes in the same way.

Then, the edges that connect two nodes of the same cluster
are also clustered to that cluster and the edges that connect
nodes of different clusters stay unclustered. Those unclustered
edges connect different clusters and convey the required mes-
sages among distinct WSN terminals.

Assessment of clustering results requires first the definition
of the comparison metric. A suitable comparison metric will
become more clear in Sec. IV, but for now, “better” clustering
is considered the one that offers less connecting edges between
different clusters; such quality metric targets at minimization
of the communication load among different WSN terminals.
Figs. 2 (for k = 2 WSN terminals) and 3 (for k = 3 or k =

Fig. 2: Clustering results, for k = 2 WSN terminals. Different
colors represent different clusters and dotted lines represent
connecting (among different clusters) edges.

Fig. 3: Clustering results, for k = 3 (up) and k = 4
(down) WSN terminals. Different colors represent different
clusters and dotted lines represent connecting (among different
clusters) edges.

4 WSN terminals) show that spectral clustering, autonomous
clustering and k-means perform better than random clustering.
Moreover, spectral clustering performs slightly better than the
others.

IV. WSN ENERGY OPTIMIZATION

The following optimization problem is defined:

min WSN Energy Consumption
s.t. ρ(Ā) < 1 and ρ(S) < 1.

. (13)

It is assumed that each WSN terminal consists of a Silab’s
Thunderboard Sense 2 embedded radio & 32-bit computing
module, for which it is true that computation cost ≪ wireless
communication cost [21]. Thus, an equivalent problem is
that of minimization of communication energy consumption,
which is proportional to the number of edges that connect the
WSN terminals, which in turn is optimized by minimizing the
RatioCut, as described in Sec. III-A. Hence, the problem is
equivalent as follows:

min RatioCut

s.t. ρ(Ā) < 1 and ρ(S) < 1
. (14)

1501



The minimization of RatioCut is a problem that can be solved
using spectral clustering (Sec. III-A). Hence, the constraints
are removed and the relaxed problem is solved. Then it
is checked if the constraints are fulfilled. It is noted that
clustering affects matrix P and therefore, matrices Ā and S.

V. NUMERICAL RESULTS

This section presents experimental results for GBP solving
a linear system of equations Mx = s, in an asynchronous
manner. In all experiments s = 1 and

M =
−1.76 −0.16 0 0 0 0 0 1.51
0.73 −0.54 0 0 0 0 0 0
0 0 1.13 0.66 1.31 0 0 0

0.86 0 1.79 −0.54 0 0 0 0
0 0 −1.37 0 −0.99 0.01 0 0
0 0 0 0 0 0.25 0 −0.44
0 0 0 0 0 −1.10 −1.90 −0.79
0 0 0 0 0 0.01 0 −0.84

.

In particular, estimation of the expected value E[∥e(l)∥2] per
iteration is plotted, using 20 independent experiments. At
iteration (l) error e is defined as

e(l) ≜ ϵ(l) − x̂, (15)

where x̂ ≜ (M⊤M)−1M⊤s is the least squares solution of
the system and ϵ(l) is the vector of all belief means (Sec. II).

Fig. 4 presents results of GBP convergence in a WSN
where all terminals have probability of being active equal to
pc = 0.5, as a function of number of clusters (WSN terminals)
k. It is shown that the choice of the clustering algorithm
heavily affects the convergence rate of the GBP algorithm.
For instance, notice that when k-means, spectral clustering or
autonomous clustering is applied instead of random clustering
then faster convergence is achieved. In most cases spectral
clustering outperforms all the other methods.

Fig. 5 offers spectral radius results as a function of WSN
probability (to be in active mode) pc and number of clusters
k. Selecting a value of pc = 0.8, which is close to the value
that minimizes ρ(Ā) offers the convergence results of Fig. 6.
Interestingly, faster convergence than before is achieved that is
independent of the mapping method applied, i.e., all clustering
methods offer roughly the same convergence rate.

Fig. 7 offers the WSN energy consumption (detailed in
Sec. IV) during distributed solution of Mx = s, with pc = 0.8
for all WSN terminals; specifically, 20 experiments were
run, for WSNs terminals that have probabilities of being
active nearly equal to the value that minimizes spectral radius
(Fig. 5), until a threshold of 10−5 is reached. It is shown
that in most cases, as the number of clusters increases, the
energy consumption also increases. Spectral clustering energy
consumption is almost equal between k = 3 and k = 4.
Moreover, spectral clustering performs better than the others,
and autonomous clustering has a performance close to both
k-means and spectral clustering. Careful mapping of PGMs to
WSN terminals can reduce total WSN energy consumption by
a factor (approximately) between 5− 7, compared to random
mapping. Similar results have been observed for other matrices
M [22].
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Fig. 4: Convergence of asynchronous GBP for WSN terminals
with pc = 0.5 for all terminals.
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Fig. 5: Experimental computation of ρ(Ā) and ρ(S) vs pc. All
WSN terminals with equal probability pc being active.
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Fig. 6: Convergence of asynchronous GBP for WSN terminals
with pc = 0.8 for all terminals.
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Fig. 7: WSN energy consumption for distributed GBP.

VI. CONCLUSION

The goal of this work was to efficiently map a PGM
to a WSN, so that the later can solve inference problems
with probabilistic asynchronous message passing, cast through
GBP. This work showed that spectral clustering can minimize
energy consumption of WSN, while convergence rate can be
independent of the mapping method with a carefully selected
set of probabilities pc. The application that was presented was
that of solving linear systems of equations. However, GBP can

solve a variety of problems [3], including distributed minimum
mean squared error (MMSE) estimator and Kalman filtering.
This work is perhaps a concrete step towards (probabilistic)
asynchronous inference over practical wireless networks.
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