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Abstract—To efficiently extract estimates about the propagation
behavior of electromagnetic waves in a radio environment it is
common to invoke the narrowband-assumption. It essentially
states that the relative bandwidth of the measurement system is so
low that the frequency response of a single propagation path only
depends on it Time-of-Flight and the response of the measurement
device can be calibrated independently of the measured channel.

Recent advances into higher relative bandwidths and antenna
arrays with larger spatial aperture render this assumption less
likely to be satisfied, which leads to a model mismatch during
estimation. In this case estimates are inherently biased and have
a special statistical behavior. This behavior can be captured by
the so-called Misspecified Cramér-Rao Bound, which formulates a
lower bound for the variance of estimates that are biased due to
model mismatch.

We analyze this bound in contrast to the traditional Cramér-Rao
Bound and show the shortcomings in the setting of joint ToF-DoA
estimation in the mmWave spectrum. The conducted numerical
studies also show that planar array geometries inherently suffer
from violation of the narrowband assumption irrespective of
the individual elements’ frequency response, whereas circular
structures show it to a lesser degree.

I. INTRODUCTION

Knowledge about the propagation behavior of radio channels
is of importance in mobile communications, localization and
sensing applications. To gain insights into the propagation,
one conducts channel sounding measurements followed by
post-processing to extract the quantities of interest [1]. These
measurements are usually carried out in the spectral, temporal
and spatial domains. For this task wideband channel sounders
are used to measure an environment with wideband signals via
arrays of antennas both at the transmitter (TX) and receiver
(RX) site. To process these so-called multiple input multiple
output (MIMO) snapshots, one formulates a suitable inverse
problem that makes use of a parametric forward-model and
estimates the parameters of interest [2].

One can derive such a model by making assumptions about
the propagation behavior of the electromagnetic waves and the
frequency response of the measurement device. We consider
the specular ray model, which models the propagation via plane
waves traveling from TX to RX. The parameters describing
such a single plane wave are Time-of-Flight (ToF), Doppler-
frequency, Direction of Departure (DoD) at TX, Direction
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of Arrival (DoA) at the RX and its polarization dependent
attenuation and phase shift [3].

The influence of the measurement device that cannot be
accounted for completely prior to processing of the data is
the frequency-, polarization- and angle-dependent response
of the used antenna elements. Since this response depends
on the parameters of interest, i.e. DoD and DoA it has to be
incorporated into the forward model upon estimation [4].

Once such a model is completely specified it is used to pose a
specific inverse problem, for which one derives an algorithm to
extract the propagation parameters from captured measurement
data. Any solver of such an inverse problem that reaches a
certain statistical quality when applied to noisy measurement
data is called a High Resolution Parameter Estimator (HRPE).
The performance of estimators can only be evaluated statistically,
since the data is modeled as a realization of a random variable.

To assess the quality of such an estimator, one can evaluate
its first and second order statistics, i.e. its bias and variance. An
estimator that in expectation is able to recover the true parame-
ters is called unbiased. For the class of unbiased estimators,
those with minimum variance are of high interest, since they
are considered optimal in this sense. Given assumptions about
the distribution of the data, e.g. it being a Gaussian distribution,
the so-called Cramér-Rao Bound (CRB) gives the minimum
variance any unbiased estimator can achieve based on the mean
and covariance of the data.

The CRB allows quantifying how suitable a specific measure-
ment process is to extract the parameters of interest [5], and it
determines the quality of estimation frameworks by serving as
a theoretical and algorithm-independent benchmark [6]. Also, it
allows describing how a scenario behaves in terms of the mean
squared error (MSE) without the need for complex Monte-Carlo
simulations involving estimation routines.

For that it is necessary that the considered estimators are
unbiased. One necessary condition for unbiasedness is that
the parametric model correctly captures the behavior of the
measurement data, i.e. it is correctly specified. In our considered
problem of channel estimation one usually employs the so-called
narrowband assumption [2], [7]. Although we are generating,
capturing and processing data occupying an extended bandwidth,
due to the small relative bandwidth we assume that only
the ToF of a single plane wave is influencing the frequency
response and that the scattering within the environment and
the responses of the antennas are constant enough over the
measured frequency band. However, the physical processes
are frequency-dependent [8], [9] such that every captured
data sample does only approximately satisfy this assumption.
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The driving motivations to make this assumption are a lower
computational complexity [2] during the estimation and lower
calibration efforts for the measurement device prior and during
estimation [10].

Ultimately, this assumption results in a so-called misspecified
parametric model, which generally yields an inherently biased
estimator, for which the CRB is not applicable. Still, many
performance analyses are carried out as if the narrowband
assumption holds in practice and comparisons of algorithms are
made based on this. If however, the algorithms’ comparisons do
not factor in the violation of the narrowband assumption into
the analysis, the theoretical findings that rely on the CRB have
only very limited carry over to real world scenarios, where
it is never satisfied. In other cases, the CRB is used as a
reference during the execution of an estimation algorithm itself
to determine the validity of the current estimate [2]. We show
that neglecting this phenomenon, can have a drastic influence
on the conclusions drawn based on the CRB, since in some
cases it differs significantly from the Misspecified Cramér-Rao
Bound (MCRB). Fortunately, in recent years the analysis of
estimators resulting from misspecified models has gained much
attention, resulting in the MCRB as a natural extension of the
CRB in this more general setting. As such, it allows to still
make statements about the statistical performance of the least
biased estimators under this model mismatch, again given in
some suitable second-order statistics.

We want to first shortly introduce the theory related to the
MCRB and then put it in the context of channel estimation and
the narrowband assumption. The aim is to start a discussion in
the field of HRPE, especially when moving to the mmWave
spectrum and beyond, where higher relative bandwidths are
considered for channel sounding. We use numerical experiments
to shed light on some effects that one encounters when moving
from the CRB to the MCRB, and we use the discrepancy
between the MCRB and the CRB as a proxy to determine
to what degree the narrowband assumption is violated. The
findings from these explorative studies can be summarized as
follows:

• As intuitively expected, the discrepancy between the CRB
and the MCRB increases for larger relative bandwidths.

• When we employ a planar array geometry for the spatial
measurements, the discrepancy between CRB and MCRB
increases also for fixed bandwidth and fixed array element
spacing but larger aperture, i.e. more elements in the array.

• In contrast to the planar array structure, a stacked circular
structure (cylindrical) shows this discrepancy to a lesser
degree, i.e. less discrepancy between CRB and MCRB.

To commence, we first need a short recap of the theoretical
basics about estimators and their statistical behavior.

II. LOWER BOUNDS FOR MISSPECIFIED ESTIMATORS

Let a full MIMO observation y ∈ CN follow a distribution
G with density fG and let us use a parametric model F : Θ →
{F |F : Ω → CN} with Θ ⊂ RT such that for every θ ∈ Θ
we get a distribution F(θ) with probability density function
(pdf) f(·|θ) : CN → [0, 1].

In our specific case of channel estimation Θ contains all
possible parameters to model a MIMO snapshot in a multipath
scenario using the narrowband assumption and the specular ray
model. Due to the misspecification, there is no θ ∈ Θ such
that G = F(θ).

The best we can hope for is to find a θ such that the
Kullback-Leibler Divergence (KLD) D(fg∥f(·|θ)) defined as

D(f1∥f2) =
∫
CN

ln

Å
f1(x)

f2(x)

ã
· f1(x) dx (1)

is minimal with respect to θ. If there is a unique θ∗ minimizing
D, then θ∗ is called the Pseudo-True Solution (PTS). Any
estimator θ̂ that satisfies E(θ̂(y)) = θ∗ is called misspecified-
unbiased (MS-unbiased), since in expectation it is able to
recover θ∗ from data y.

Based on f(·|θ) and data y we can define the misspecified
log-likelihood λ : Θ → R+

0 via
λ(θ) = ln f(y|θ) (2)

and two matrices A,B ∈ RT×T

Ai,j = E

ï
∂λ(θ∗)

∂θi∂θj

ò
, Bi,j = E

ïÅ
∂λ(θ∗)

∂θi

ãÅ
∂λ(θ∗)

∂θj

ãò
. (3)

Last, define the error covariance C : Θ → RT×T depending
on the PTS θ∗ as

Ci,j(θ) = E
[
(θi − θ∗i )(θj − θ∗j )

]
(4)

If the matrix A is invertible and the estimator θ̂ is MS-unbiased,
the Misspecified Cramér-Rao Bound states that the errors’
covariance C satisfies

C(θ̂) ⪰ A−1BA−1, (5)
which means C(θ̂) − A−1BA−1 is positive semi-definite.
Usually one is interested in the so-called misspecified mean
squared error (MMSE), i.e. the diagonal entries of C, namely

Ci,i(θ) = E
[
(θi − θ∗i )

2
]
.

Note that in the correctly specified case, an MS-unbiased
estimator θ̂ is naturally unbiased, and we have that −A = B,
such that (5) recovers the conventional CRB and C is a lower
bound for the MSE.

In this publication, we assume that the only source for
misspecification is the oversimplified model of the antenna
response. Hence, it is valid to model both G and F(θ) as
complex Gaussian distributions with equal covariance Σ ∈
CN×N but different means. Then, our misspecified parametric
model for y ∼ N (µ,Σ) is defined by a function s : Θ → CN

and results in F(θ) = N (s(θ),Σ), where s(θ) ̸= µ for all
θ ∈ Θ. Under the assumption of Gaussian distributions and
smooth s the matrices A and B can be computed in closed
form.

The only quantity still elusive is the PTS, since it is not clear
how to minimize D or how to prove we have minimized D.
Luckily, given some suitable regularity conditions, the estimator

θ̂ = argmax
θ∈Θ

λ(θ), (6)

called the Misspecified Maximum-Likelihood Estimator
(MMLE), is asymptotically MS-unbiased and (5) is an equality
in this case. In our case, we are going to use RIMAX [2] as
the ML estimator, to obtain the PTS.
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III. EXPLORATIVE NUMERICAL ANALYSIS

Since the scenarios we are going to study are too complex for
closed form expressions either for the CRB or the MCRB, we
will carry out the evaluations purely based on numerical versions
of (5), but with analytic expressions for A and B. In our case
of Gaussian distributions, there are formulas [11] reminiscent
of the Slepian–Bangs formula [12] for the Fisher Information
Matrix (FIM) in case of Gaussian likelihood estimation.

The scenario we are going to study is a static, broadband
Single Input Multiple Output (SIMO) setting, where we employ
a single perfectly isotropic antenna at TX and an antenna array
at RX where we take equi-spaced measurements in frequency
domain from f0 to f1. We collect these frequencies in a vector
ϕ ∈ RNf . Further, assume that the measurement system has
been fully calibrated offline, such that the only part of the
measurement system that has to be accounted for are the Nr

different polarization-, angle- and frequency-dependent antenna
beampatterns at RX. The parameters we estimate are ToF
and DoA. With respect to these all errors and bounds are
calculated. Finally, these beampatterns will also be our only
source of model-mismatch in the sense that we assume these
to be frequency independent, when in reality they are not.

The true model we use to generate the data is st : Θ →
CNf×Nr and it reads as

stf,r(θ) =

P∑
p=1

γe,p · arx
f,r,e(ϑp, φp) · exp(ȷ2πϕfτp), (7)

where γe,p ∈ C2, ϑp ∈ [0, π], φp ∈ [−π,+π] and τp ∈ [0, 1]
denote the polarimetric pathweight, co-elevation and azimuth and
ToF of the p-th propagation path impinging at RX respectively.
This renders the parameter space Θ ∈ RP ·7. The key component
here is that the function arx

f,r,e represents the farfield beampattern
of the r-th antenna element at frequency ϕf for electric
field component e, which models the response to one of
two orthogonal excitation modes (usually denoted H and
V ) [13]. Note that this directly shows that st is not invoking
the narrowband assumption, since it accounts for a changing
antenna response over frequency.

The model s : Θ → CNf×Nr using this assumption then
naturally reads as

sf,r(θ) =

P∑
p=1

γe,p · arx
r,e(ϑp, φp) · exp(ȷ2πϕfτp), (8)

where the interpretation of the parameters in comparison to (7)
has not changed. Henceforward, each data sample we consider
is going to be of the form

y = st(θ0) + nt (9)
for some white Gaussian complex circularly symmetric noise-
vector nt ∼ N (0, σ2INf×Nr

), where INf×Nr
is the identity

matrix. However, we are going to assume it is of the form
y = s(θ0) + n, (10)

which introduces the misspecification. Here, n is assumed
to follow the same distribution as nt. We will compare the
estimation bounds in the sense that we use st to generate the
true data and estimate it with the model s. In our specific
case we use a frequency dependent description of the antenna
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Fig. 1. The MMSE agrees with the MCRB – MMSE and bounds for a 2-path
scenario at 3GHz bandwidth around 26.5GHz and a 3×8 StUCA depending
on the sources’ distance in azimuth.

response to calculate st, while we use the respective single-
frequency beampattern at the considered center frequency in
ϕf to evaluate s.

Also, in any case we use Monte-Carlo simulations over
multiple noise realizations and calculate ∥θ∗ − θ̂∥22 from an
estimate θ̂ to get estimates of the MMSE in a certain parameter
constellation. The PTS θ∗ is computed using RIMAX where
we assume knowledge of the correct number of sources and the
noise variance. For the CRB computations, we evaluate (5) for
the case A = −B at the true but unknown parameter θ0 in (7),
as it is usually done in practice. For the MCRB we evaluate
(5) at the retrieved PTS. Unless stated otherwise we use a fixed
Signal-to-Noise Ratio (SNR) of 20 dB. Additionally, no matter
the bandwidth, we choose ∆f = 50MHz as sampling distance
in frequency domain.

A. Synthetic Stacked Uniform Circular Array

Let us first consider an array geometry of ideal (read:
synthetic) Hertzian dipoles. At each spatial sampling location,
we place a pair of two dipoles oriented such that they are
sensitive to orthogonal polarizations. The physical length of
the dipole corresponds to the wavelength at the center of the
used frequency band. We use these “polarimetric” dipoles as
single elements in a stacked circular array structure consisting
of 3 rings containing 8 elements each, which is a popular
geometry employed in channel sounding. To avoid spatial
aliasing we choose the spacing of the elements that they obey
the λ/2-criterion both across the rings and within the rings.
We use the readily available closed form solutions for the
frequency-dependent farfield beampattern of a Hertzian dipole
as found in [14, p. 133–151].

We consider a two-source scenario, where one source is kept
fixed at delay τ1 = 0.5, co-elevation ϑ1 = π/2 and azimuth
φ1 = 0. For the second source we choose the same parameters
and only vary φ2. The results are depicted in Figure 1, which
we obtained for a bandwidth from 25GHz to 28GHz. For
larger |φ1 − φ2| all three quantities agree very well, whereas
for smaller distance between the two paths – practically the
more interesting case – we see a stark deviation of the CRB
from the MCRB. More importantly the latter is able to predict
the behavior of the MMSE correctly. This simple scenario
already shows a shortcoming in prediction accuracy of the
CRB. It is also noteworthy that the relative bandwidth of 4%
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Fig. 2. The area of stark deviation of the CRB from the MCRB increases for
larger relative bandwidths – Ratio of the bounds for different bandwidths for a
2-path scenario and a 3× 8 StUCA depending on the sources’ distance in
azimuth.

is usually not considered large enough motivating us to drop
the narrowband-assumption.

We now repeat above simulations for different bandwidths,
where the lower frequency is fixed at 25GHz. Figure 2 depicts
the ratio of the calculated estimation bounds, where values far
from 1 indicate a large deviation of the CRB from the MCRB
and values closer the opposite. As expected, the difference
between the two bounds increases with increasing relative
bandwidth in the sense that the azimuth interval where the
two bounds disagree is increasing. What is also astonishing is
the fact that the CRB predicts a higher MSE than the results
yield. This is due to the fact that the CRB is evaluated at the
true θ0 whereas the MCRB is evaluated at the PTS θ∗. Not
only are different expressions evaluated, but also at possibly
different locations. The fact that the MCRB is lower than the
CRB does not mean that the estimate from the misspecified
model is “more accurate” than predicted by the CRB.

B. Synthetic Aperture Uniform Rectangular Array

For the above simulations we employed a entirely synthetic
antenna model based on a dipole. Now we aim at incorporating
measured beampatterns into our calculations. To this end, we
use the antenna data of the Synthetic Aperture Measurements of
Uncertainty in Angle of Incidence (SAMURAI) measurement
system[15] developed at National Institute of Standards and
Technology (NIST)1. The system consists of a single open-
ended waveguide that is moved by a robotic arm to acquire
spatial samples, thus forming a synthetic aperture. The main
feature of this antenna is that it behaves very stable across the
considered bandwidths both in amplitude and phase. As such
its response can be approximated well by the beampattern of
the respective center frequency. Hence, there is no indication
for a severe violation of the narrowband assumption.

In our experiments we are going to consider a Uniform
Rectangular Array (URA) structure with nrx × nrx many
elements obeying the spatial sampling theorem at the respective
upper frequency considered. The lower frequency is kept fixed
at 27GHz and the upper frequency limit is adjusted accordingly.

We consider a scenario with 6GHz of bandwidth, a 17× 17
URA structure oriented perpendicular to the spherical basis

1We thank Damla Guven and Camillo Gentile for providing the data and
NIST for the permission to use it.
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Fig. 3. The MMSE agrees with the MCRB – MMSE and bounds for a 2-path
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Fig. 4. Increasing the bandwidth increases the misspecification due to the
narrowband assumption – Ratio of the bounds for different bandwidths for a
2-path scenario and a 17× 17 URA depending on the sources’ distance in
azimuth.

vector er at co-elevation π/2, azimuth 0 and radial part 1. We
simulate a two-source scenario, where one source is kept fixed
at delay τ1 = 0.5, co-elevation ϑ1 = π/2 and azimuth φ1 = 0.
For the second source we choose the same parameters as for
the first source and set φ2 = π/(2 ·17). In Figure 3 the MMSE
perfectly aligns with the MCRB once the estimation algorithm
is in the SNR regime where it is producing valid solutions.
However, one can also see that both the CRB and MCRB scale
linearly with the SNR on a logarithmic scale as expected.

We stay with this two-source scenario and the 17× 17 URA
structure as above, where for the second source we choose the
same parameters as for the first and only vary φ2. Figure 4
shows that the disagreement between CRB and MCRB increases
proportionally with the increase in bandwidth. For closely
spaced sources, a similar behavior as in Figure 2 is visible that
the disagreement between the bounds rapidly increases. Also,
compare this to Figure 2, where the disagreement between the
MCRB and the CRB only happens for low angular difference
of the two sources but not for large ones as in Figure 4.

What is usually done to improve the angular resolution is to
increase the number of antenna elements. The beamwidth of
such an array is steadily decreasing for more elements, i.e. a
larger spatial aperture. The farfield and frequency-dependent
steering vector of this array can be expressed as

af,e(ϑ, φ) = awg
fc

(ϑ, φ) · exp(ȷ2π ·ϕf · ⟨pe, r(ϑ, φ)⟩), (11)
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the narrowband assumption – Ratio of the bounds for different aperture sizes
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where r(ϑ, φ) ∈ R3 is the Cartesian coordinate where a ray
from direction (ϑ, φ) pierces the unit sphere of R3 and pe ∈ R3

denotes the measurement position of the e-th element in the
synthetic aperture. If we employ the narrowband-assumption at
center frequency fc, we calculate

ae(ϑ, φ) = awg
fc

(ϑ, φ) · exp(ȷ2π · fc · ⟨pe, r(ϑ, φ)⟩). (12)
However, taking a close look at the expression unveils that for
spatially larger apertures some elements have such a large ∥pe∥
such that ⟨pe, r(ϑ, φ)⟩ extends over a considerable number of
wavelengths resulting in a phase error when using ae instead
of af,e for those elements that are at the border of the URA
and those frequencies at the edge of the considered band.

We expect for fixed bandwidth and increasing spatial size of
the URA, the CRB and the MCRB must disagree more. This
is reflected in Figure 5, where we repeated the simulations of
Figure 4 for fixed bandwidth of 6GHz but instead increasing
the number of antenna elements in the URA. As can be inferred
from the ratio of the bounds, the number of elements, i.e.
the spatial dimension of the array, additionally contributes
to the violation of the narrowband-assumption. As obvious
from (11) and (12), this would also happen for a perfectly
frequency-flat antenna response, since the effect results from the
spatial distribution of the elements and this processes’ frequency
response, i.e. the resulting phase change over frequency.

IV. CONCLUSION

The numerical studies suggest that the employed RIMAX
estimator is MS-unbiased, at least in the scenarios considered,
since it can serve as a tool to obtain the PTS and also the
resulting MMSE from its estimates follows the MCRB.

We use the discrepancy between the CRB and the MCRB
as a proxy to infer how much the narrowband-assumption is
violated. The simulations suggest that circular array structures
suffer less severely from the use of higher bandwidths since
the discrepancy between CRB and MCRB behaves more stable.
Most surprisingly the results in Figure 5 suggest that for fixed
bandwidth, the increase of the spatial aperture leads to a stark
violation of the narrowband-assumption.

Concluding, we would like to point out that the MCRB is
no measure for the true bias of the resulting estimates. The

MCRB is a bound for the estimates’ deviation from the PTS,
which generally is biased away from the true parameter given
model mismatch. From a practical point this bias of the PTS
would be most interesting, but up until now it remains elusive
in terms of theoretical bounds.
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