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Abstract—Energy disaggregation, also known as Non-Intrusive
Load Monitoring (NILM), is the process of analyzing energy
consumption in a building and identifying individual appliance-
level energy usage. This approach can provide valuable insights
into energy consumption patterns and help reduce overall energy
usage, costs, and carbon emissions. This paper proposes a
new method for tackling the disaggregation problem by using
data from low-cost wireless sensor networks. The proposed
approach estimates appliance states using a GMM model and
uses these states as features to improve energy disaggregation.
The performance of the proposed method was evaluated on a
real-world dataset called SmartSense deployed in our lab, and
the results showed that it significantly improved the accuracy of
conventional NILM disaggregation performance.

Index Terms—Energy disaggregation, NILM, GMM, Window-
GRU, wireless sensor platform SmartSense

I. INTRODUCTION

The current global energy consumption is estimated to be
29,000 TWh by the International Energy Agency [1], and it is
projected to increase to 42,000 TWh in 2040, with an annual
growth rate of approximately 2.1%. This substantial rise in
energy usage makes the issue of energy conservation increas-
ingly challenging. It has a severe impact on both a country’s
economy and the environment. Therefore, promoting efficient
energy usage is the most practical approach to conserve energy
at present. By accurately monitoring energy consumption and
communicating this information to consumers, energy waste
can be significantly reduced [2], [3]. One solution to aid in
this reduction is the disaggregation of energy consumption.

Energy disaggregation can be done using two main methods:
Intrusive Load Monitoring (ILM) and Non-Intrusive Load
Monitoring (NILM). Intrusive load monitoring involves mea-
suring the power consumption of one or more appliances using
a low-end metering device, typically requiring at least one
monitoring device per appliance. In contrast, Non-intrusive
load monitoring only requires a single measure for the entire
home or building being monitored.

The novelty of this paper consists in an intermediate solution
combining classical energy consumption data with wireless
sensors to form an aided NILM or semi-intrusive load moni-
toring (SILM). Our lab designed a Smart Building platform,
called SmartSense, which collects data from individual and
global power meter and from various low-cost wireless sensors
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like air quality, luminosity and temperature. In this study, we
provide a novel dataset that includes not only individual and
global power data but also data from numerous sensors that
will provide a-priori knowledge of the load state.

The paper is organized as follows. In Section II, we remind
the state of the art and the work environment. Section III
introduces our workflow process associating wireless sensors
with NILM and our new platform SmartSense. Finally, we
describe and analyze preliminary results.

II. RELATED WORKS

The concept of Non-Intrusive Load Monitoring (NILM),
where energy meter data from the entry point could be used to
disaggregate loads, was first introduced by Hart in the 1980s
[4]. With the rise of smart meters, there has been a surge in
publications on the subject of NILM [5], [6]. The ultimate aim
is to analyze each appliance’s state and power consumption
using only a single reading of the total power usage. This
is why a solved NILM problem is frequently referred to
as “disaggregated” [7]. Figure 1 explains the basic NILM
concept. For instance, from ¢t = 12 to ¢t = 28 minutes, an
oven element is turned on. At ¢ = 17, a stove burner is turned
on. The first issue is identifying the precise moment when
these appliances are turned on and off using their electrical
signature, which can take the form of activation height, length,
or shapes that are depicted with arrows. Estimating their power
loads based on this trace is a second issue.

In literature, several techniques are commonly implemented
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Fig. 1: Concept of typical NILM as presented in [4].

for NILM approach. For instance, signal processing techniques
such as Fourier analysis, wavelet transforms, and filtering
are used to extract features from the aggregated data [8].
Machine learning algorithms such as Support Vector Machines
(SVMs) [9], and Artificial Neural Networks (ANNSs) [10] are
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employed to classify the extracted features and identify the
corresponding appliances. Probabilistic models such as Hidden
Markov Models (HMMs) [11] [12] and Bayesian Networks
[13] are used to model the statistical dependencies between
the appliances and improve the accuracy of the disaggregation
results. Lastly, some studies have also explored the user
behavior patterns [14] to enhance the performance of NILM
systems.

In order to design, test and evaluate energy-disaggregation
algorithms, free-access energy consumption datasets are cru-
cial for NILM researchers. A NILM dataset is a set of
electrical energy measurements captured from real-life sce-
narios, without perturbing daily routines in the monitored
space, hence, keeping the data as close as possible to reality
[15]. These datasets include high-resolution measurements of
the aggregate electricity consumption of a building, along
with detailed information about the individual appliances and
their energy consumption patterns. Moreover, they can be
categorized according to their high/low sampling frequencies
varying from 1Hz to 16kHz. Some of the datasets that have
been widely used to evaluate the performance of various
NILM algorithms during the last decade are REDD [16],
BLUED [17] and UKDALE [18].

Studies considering NILM techniques use metrics to evaluate
the performance of their algorithms. Unfortunately, there is
no agreement on the measures that should to be used to
assess a NILM algorithm’s effectiveness. the most used metrics
found in the studied literature [18] [19] are disaggregation
accuracy, precision, recall, F1-score, the Root Mean Squared
Error (RMSE) and Mean Absolute Error (MAE). The two last
metrics (MAE and RMSE) correspond to the 12 and 11-norms
of thr losses and are defined by:

T T
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RMSE = T tEZI |yt — y¢|? and MAE = T zgzl |ge — ye| (1)

where gy; represents the prediction of an appliance’s energy
usage at time t and y; represents the corresponding ground
truth.

For many years, it was almost impossible to find a way
to compare literature findings and experiments in NILM.
No previous standard existed in terms of experiment setup,
data acquiring and data format. Therefore, an open source
toolkit written in python called Non-Intrusive Load Monitoring
Toolkit or NILMTK [19] was designed to tackle these issues.
It is designed to be a standard tool for NILM tasks, and to
be used among researchers. With NILMTK, researchers can
have some guidelines on how obtained data and predicted
data to be collected, stored, compared, evaluated and even
represented in the similar manner or format. Thus, the results
from disaggregation can be compared and discussed on the
performance of an algorithm used.

III. SEMI-INTRUSIVE LOAD MONITORING
A. SmartSense dataset

Using environmental sensing and diverse information can
help overcome challenges faced by current NILM tech-

niques [20]. However, this can increase complexity. Hence, a
more efficient approach could be to merge supplementary data
with the overall power consumption of the building for load
monitoring. Furthermore, the increasing number of intelligent
sensors integrated into buildings for different purposes has
made it more feasible to acquire this information without
additional setup, which may explain the recent emphasis on
this method. As far as we are aware, no prior research has
used environmental sensors in the NILM area.

The dataset used in this study is called SmartSense, which
serves as a research platform that employs a sensor network
designed for multiple data acquisition purposes. More than 120
nodes are deployed inside our lab and each node within the
network comprises fifteen sensors that collect a diverse range
of information (see Figure 2), including:

« Video sensors (Video-Graphic-Array (VGA), Infra-Red (IR)
cameras) and audio sensors (4 microphones in tetrahedron
authorizing localization);

« Radio sensors (2.4 GHz, Sub-GHz, and Ultra-Wide-Band)
to sense the radio-frequency band occupancy and to estimate
positions;

o Air quality sensors (temperature, humidity, carbon dioxide
concentration, air pressure, etc.);

o Light sensors (Ultraviolet and Red-Green-Blue-White);

o Distance sensor (Laser telemeter).

Camera infra-red low resolution

UWB Antenna

Temperature o
(localisation)

Humidity
Co?

Fig. 2: Different sensors in one node.

Additionally, SmartSense platform contains a record of
power consumption in each floor in our lab as a classical
NILM (figure 3):

« global power consumption recorded by an EcoCompteur
with a frequency of 7Hz;

« individual power consumption of various electrical appli-
ances recorded by a ZigBee meter with a frequency of
100mHz.

A summary of SmartSense features is shown in Table L.
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Fig. 3: Hardware devices used to collect power consumption
data for SmartSense data

TABLE I: SmartSense dataset features

Measurement Data type Frequency Appliances
device

EcoCompteur | global power 7.5 Hz coffee maker,
consumption kettle, fridge, oven,

ZigBee meter | individual 100 mHz microwave, laptop,
power printer, light
consumption

Sensors node sensors data 1 Hz

B. Proposed workflow

This paper proposes a Semi-Intrusive Load Monitoring ar-
chitecture (SILM) that uses power consumptions and wireless
sensors data to detect individual power consumption of devices
from aggregated power data as shown in Figure 4a.

In fact, the SILM architecture is composed mainly of 2
parts:

o The first part called the features extraction phase intends to
extract a useful information from sensors data and then feed
them to the input of the next step;

o The second part called the disaggregation phase in which
the standard NILM workflow is kept. It entails three main
phases, including data preprocessing, disaggregation, and
performance evaluation.

The aim of our work is to find a good way in exploiting

sensors data and extracting a useful information that will help
in improving NILM performance. The first naive idea we
started with is to add raw sensors data to the aggregated power
data as input and let the disaggregator algorithm deal with it.
The results show that disaggregation performance compared
with the typical NILM improved slightly for the kettle while
they stayed almost the same for the coffee maker.
We recognize that raw sensors data could have noise that could
limit the disaggreator algorithm’s effectiveness. Consequently,
it is essential to extract features, such as appliance states,
from this data. The disaggregation process involves identifying
when an appliance is being used and determining its state. We
believe that by focusing on classifying appliances as either
ON or OFF, we can further use this information to enhance
the accuracy of the disaggregation process. As a result, we
chose to implement for the states estimation task a Gaussian
mixture models (GMM) since it showed a good performance
in data clustering and classification [21].

C. Gaussian Mixture Models as an estimator

Gaussian mixture models (GMM) are a probabilistic ma-
chine learning technique that can provide better approximation
when the clusters are overlapping, as compared to k-means
clustering [22]. Thus, the GMM model will be used in our

case as the estimator/classifier of appliances states as shown
in Figure 4b. In Gaussian mixture models, each cluster is
modeled as a multivariate Gaussian distribution with the
probability density function defined as:

f@) = oxp (50— W @ - )

1

v (2m)" X
where € R" is the random vector, ;& € R" is the mean
vector, 3 is the n x n positive-definite covariance matrix, and
|X]| is the determinant of X.

If a given appliance can be described by K different
states, then for a mixture of Gaussians we have K Gaussian
distributions

K
p(X) =Y N (X, Si)

k=1

where NV (X |y, Xi) represents the multivariate Gaussian dis-
tribution with mean vector uj and covariance matrix Xy, K
represents the number of Gaussian mixtures, and 7y is the
mixing proportion for the kth component, and Zle = 1.

Since there is a mixture of Gaussians, the parameters
M, 2j, and 7 have to be determined. These parameters
are estimated by using the Expectation-Maximization (EM)
method [23]. EM consists of two steps (cf Algo 1). In the
expectation step (E-Step), the initial estimates of the parame-
ters are assigned using k-mean clustering and the probability
of each latent variable is calculated. In the maximization
step (M-Step), the parameters are modified to maximize the
likelihood of the data with the initial assignments. These steps
are repeated until a local optimum is achieved.

Algorithm 1 Expectation-Maximization Algorithm for Gaus-
sian Mixture Model

Require: Data points x1,Z9,...,2xxN; number of mixture
components K
1: Initialize parameters: 7;, p;, 2j for j =1,2,... | K
2: while not converged do
3:  E-Step:
4. foriv=1to N do
5 for j=1to KNdO\ .
e Ti|lhj,20
6 O v e
7: end for
8: end for
9:  M-Step:
10: forjzlthdo
1 7y ¢ s
12: [y 7221#& LT
#§=1 74 T
13: Y« Ei:””(w"_ﬁxm_w)

14:  end for
15: end while

In this code, K is the number of Gaussian components in
the GMM, N is the number of data points, 7; is the mixing
coefficient for the j-th Gaussian component, p; and X; are
the mean and covariance of the j-th Gaussian component, -;;
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Fig. 4: Semi-Intrusive Load Monitoring synoptic

is the responsibility assigned to the j-th Gaussian component
for the i-th data point, N'(z; | pj, X;) is the Gaussian density
function evaluated at ; with mean f1; and covariance ¥;. The
EM algorithm iterates between the E-step (Expectation step),
where responsibilities are updated, and the M-step (Maximiza-
tion step), where parameters of the Gaussian components are
updated until convergence (classical threshold).

IV. RESULTS
A. Dataset

The dataset used for the experiments below was exported
from our SmartSense platform with a duration of 30 days.
Afterwards, it is split into train and test data, each with 15
days. This paper focuses on separating the power consumption
data of specific appliances in our lab’s kitchen, including
the coffee maker, kettle, microwaves, oven, and lights. The
data includes both the overall power consumption as well as
individual power usage for each appliance. Additionally, the
data includes readings from 25 different sensors, measuring
factors such as CO2 levels, humidity, and temperature as
described in section III.

B. States estimation phase

a) Proof of Concept: Before starting the implementation
of the GMM, we made a Proof of Concept (POC) in order
to prove that adding an a-priori information of appliances
states could improve the disaggregation performance. Indeed,
the individual power consumption used as reference during the
training phase of the disaggregation was transformed to O or
1 representing the states OFF and ON of an appliance, or No
Activity and Activity. Then, these states information
was added with the aggregated power data as an additional
input of the standard NILM workflow. Finally, with this
augmented input a typical disaggregation with NILMTK was
performed.

b) GMM: The GMM model was implemented through
the Python library Scikit-Learn. For each appliance the training
data was used to fit two models for each class, ON and
OFF. The log-likelihoods of each class were then determined,
and the test data samples were assigned to the class with the
highest log-likelihood ratio. For conciseness, in this paper we
present the validation of the proposed semi-intrusive approach
(see Fig.4(b)) by using a single measure corresponding to
the CO2 sensor. The approach will be extended to higher
dimensions. The initial findings focused on determining the

states of the coffee maker and kettle and they are presented in
Table II and Table III.

TABLE II: Confusion Matrix of coffee maker states estimation
from sensors data with K = 9 and CO2 sensor

Predicted Class

True Class  Negative  Positive  Support
Negative 99726 32464 132190
Positive 141 1229 1370
Precision Recall F1 Score
Negative 1.00 0.75 0.86
Positive 0.04 0.90 0.07

TABLE III: Confusion Matrix of Kkettle states estimation from
sensors data with K = 7 and CO2 sensor

Predicted Class

True Class  Negative  Positive  Support
Negative 91189 41380 132569
Positive 315 676 991
Precision Recall F1 Score
Negative 1.00 0.69 0.81
Positive 0.02 0.68 0.03

C. Disaggregation phase

During this stage, the previously estimated states were
presensted as an additional input (with the overall power
consumption) of the standard NILM pipeline that was executed
using NILMTK.

We chose the The Windowed Gated Recurrent Unit (Window-
GRU) model [24] as the disaggregation algorithm. In fact, it
is a novel Recurrent Neural Network (RNN) architecture that
is designed to capture long-term dependencies in sequence
data. The algorithm introduces a window-based processing
technique that selectively focuses on relevant past information
while suppressing irrelevant information. The WindowGRU
algorithm showed its effectiveness on various sequence mod-
eling tasks, and showed that it outperforms traditional GRU
models and other state-of-the-art approaches. Added to that,
it has the potential to improve the performance of RNNs
in various sequence modeling tasks that involve long-term
dependencies.

The WindowGRU architecture incorporates a single convo-
lutional layer with 16 filters, a 1x8 kernel size, and linear
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activation. It also utilizes two Bidirectional GRU layers with
64 units, tanh activation, and a 0.5 dropout rate. Additionally,
it employs two fully connected layers with 128 units and a
linear activation function.

Table IV presents the outcomes for the coffee maker and kettle
and compares it with the disaggregation performance using
only the power consumption as input.

The unmarked values indicate the outcomes obtained solely
from the total power data, while the values marked with
underlines show the results obtained from the suggested input,
which includes both the total power data and states information
and finally, the values in bold indicate the results of the POC
which we want our results to be as similar to them as possible.

TABLE IV: Evaluation of disaggregation performance

Appliances RMSE MAE
69.82 6.69

Kettle 48.66 3.11
15.37 1.28

26.27 2.65

Coffee maker 21.95 1.64
7.26 1.04

According to the table above, our approach surpassed the
conventional NILM disaggregation with only CO2 sensor
and demonstrated that incorporating sensors data about the
environment can enhance NILM disaggregation.

V. CONCLUSION

Our study aimed to evaluate the effectiveness of a new
NILM approach for disaggregating energy consumption data
from smart meters and wireless sensors into individual
appliance-level data. This new approach is based on inte-
grating additionnal features to the input that were obtained
from specific sensors data that provide additional information
from each appliance environment. Our results show that the
approach achieved high accuracy in identifying individual
appliances compared to the conventional NILM approach.

However, our study also had some limitations that should be
considered when interpreting the results. First, the algorithm
was trained and tested on a relatively small dataset (15 days),
which may limit its generalizability to other settings. Second,
the accuracy of the algorithm varied not only across different
appliance categories but also the sensors data (in this work
we used only CO2 data). The difficulty here is to find the
optimal combination of various sensors data that enhance
the disaggregation performance for a given appliance but our
solution is able to increase the GMM dimension.

Future research could explore ways to further improve the
accuracy and robustness of NILM algorithms, particularly for
challenging appliance categories such as printer and laptop
whose consumption may depend on their activity.
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