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Abstract—In this paper, we explore the problem of direction-of-
arrival (DOA) estimation with unknown mutual coupling using a
deep learning (DL) framework which is based on Toeplitz prior.
First, for source number estimation, we model it as a multi-
label classification task and build a source number detection
network (SNDN) to learn relevant information in the real sample
covariance matrix. Next, taking full advantage of the Toeplitz
structure, an ideal covariance reconstruction network (ICRN)
is proposed to recover the ideal covariance matrix free from
mutual coupling and noise interference. Furthermore, we design
a database to store the parameters of ICRN after training
on different numbers of sources, and its role is to load the
corresponding parameters for ICRN according to the detection
results of SNDN. Finally, the DOAs can be easily estimated from
the restored covariance matrix by the MUSIC. The simulation
results show our proposed approach not only outperforms the
existing classical methods, but in some cases its DOA estimation
accuracy can even exceed the Cramér-Rao Lower Bound.

Index Terms—direction-of-arrival (DOA) estimation, mutual
coupling, deep learning (DL), Toeplitz structure

I. INTRODUCTION

Direction-of-arrival (DOA) estimation is a significant prob-
lem in various areas of array signal processing, such as radar,
sonar, mobile and wireless communication (e.g., [1]–[4]). In
the past decades, many high-resolution algorithms like MUSIC
[2] and ESPRIT [3] have been proposed to achieve DOA
estimation. However, these methods rely heavily on an ac-
curate characterization of the array for desirable performance.
In practical application, unknown mutual coupling inevitably
exists between array elements, which will seriously deteriorate
the performance of the above algorithms [4].

To reduce or even eliminate the mutual coupling effect,
a large number of classical algorithms have been suggested,
which can be roughly divided into three categories. The first
one makes full use of the symmetric Toeplitz structure of
the mutual coupling matrix for the uniform linear arrays
(ULAs) (e.g., [5]–[7]). By only using the output signal of
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the middle subarray of ULAs, accurate DOA positioning can
be achieved without compensating for mutual coupling. Nev-
ertheless, there is no doubt that using the information of the
middle subarray will reduce the array aperture, which will lead
to limited applicability of such algorithms. In addition, there
are reduction-based algorithms that utilize all the information
of the array (e.g., [8], [9]), but in some cases the appearance
of false peaks greatly reduces the positioning accuracy of the
algorithm. The above two types of algorithms are mainly based
on the nature of the subspace to achieve positioning, while
finally there is another type of algorithm based on sparse
reconstruction, which has achieved great performance (e.g.,
[10], [11]). However, this method usually requires the applica-
tion of second-order statistics or higher-order statistics, which
has relatively high computational complexity. In general, the
above traditional algorithms have their own irreparable defects.
In comparison, deep learning (DL) has shown outstanding
positioning advantages in many harsh environments (e.g.,
[12]–[17]). To the best of our knowledge, the application of
DL for multi-DOA estimation under unknown mutual coupling
has not been well studied.

Therefore, in this paper, we propose a Toeplitz prior-based
DL framework for multi-DOA estimation in unknown mutual
coupling. First, a source number detection network (SNDN) is
constructed, whose input and label are the sample covariance
matrix and source number respectively. Then, based on the
Toeplitz matrix structure, an ideal covariance reconstruction
network (ICRN) is designed, which can be used to restore
an ideal covariance matrix without mutual coupling effect and
noise interference. It is worth noting that in order to improve
the performance, the parameters of ICRN are determined from
the pre-training database according to the estimation results of
SNDN. Finally, we employ MUSIC to estimate DOA from the
recovered covariance matrix.

II. SIGNAL MODEL

Consider K narrowband far-field sources impinging on a
uniform linear array (ULA). The ULA is assumed to have
M sensors with spacing d. The K signals, {sk(n)}, arrive
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at the array from different directions, {θk}, with respect to
the normal line of the array. Taking the mutual coupling into
consideration, the received data at discrete time n can be
approximated as

x(n) = CAs(n) + w(n) (1)

where x(n), s(n) and w(n) are the vectors of the array’s
output, the incident signals and the additive noises, which
are given by x(n) = [x1(n), x2(n), · · · , xM (n)]

T ,
s(n) = [s1(n), s2(n), · · · , sK(n)]

T , and w(n) =
[w1(n), w2(n), · · · , wM (n)]

T respectively. In additional,
the matrix C stands for the mutual coupling effect,
which has a banded symmetric Toeplitz structure, i.e.,
C = toeplitz(c), where c = [1, c1, c2, · · · , cP , 0, · · · , 0] with
0 < |c1|, |c2|, · · · , |cP | < 1. The array response matrix A is
defined by A = [a(θ1),a(θ2), · · · ,a(θK)], and a(θk) is the
array steering vectors which can be expressed as

a(θk) = [1, e−j2πdsinθk/λ, · · · , e−j2π(M−1)dsinθk/λ]
T

(2)

where (·)T denotes the transposition, and the distance d
between adjacent sensors is the same with half the carrier
wavelength λ.

From (1), the array covariance matrix is given by

RC = E{x(n)xH(n)} = CARsA
H︸ ︷︷ ︸

R

CH + σ2IM (3)

where E{·} represents the statistical expectation, (·)H denotes
the Hermitian transposition, Rs , E{s(n)sH(n)} represents
the covariance matrix of the incident source, σ2 denotes the
noise power and IM stands for the M ×M identify matrix.
Note that R denotes the ideal array covariance matrix, which
is a Hermitian matrix with Toeplitz structure.

In this letter, we concentrate on the multi-DOA {θk}Kk=1

estimation from the finite array data {x(n)}Nn=1 with noise and
mutual coupling. For this purpose, we design to reconstruct R
from the sample covariance matrix R̂C by the DL algorithms,
which is given by R̂C = 1/N

∑N
n=1 x(n)xH(n). However,

it is relatively difficult to directly reconstruct R with M ×M
variables for the DL methods, because a complex network
and a large amount of training data are required to achieve
satisfactory estimation performance. Luckily, taking advantage
of the Toeplitz structure of R mentioned above, we observe
that R can be simply represented by its first row r, whose size
is only M × 1. Therefore, we propose to learn the mapping
relationship between R̂C and r by the DL algorithms. After
obtaining r, accurate DOA estimation can be easily realized
by MUSIC.

III. PROPOSED METHOD

As shown in Fig. 1, the proposed architecture takes the N
snapshots of array data as input, which is then transformed
into a real-value sample covariance matrix R̄C . The ICRN
is used to recover the first row real-value data r̂ of the ideal
covariance matrix from R̄C containing mutual coupling and
noise information. It should be noted that the parameters

Fig. 1. Description of the proposed architecture for multi-DOA estimation
under the mutual coupling.

of the ICRN are loaded from the database, which stores
the corresponding network weight information of the ICRN
trained under different numbers of sources. In additional, the
SNDN mainly undertakes the task of estimating the number
of sources K̂ in the sample data, which is used to assist the
parameter selection of the ICRN. Next, according to the nature
of the Toeplitz structure, the r̂ obtained from the ICRN is
converted into a complete ideal covariance matrix R̂. At last,
multi-DOA can be estimated from R̂ via MUSIC.

A. Feature Selection

Because the sample covariance matrix R̂C contains all
the second-order statistical information of the received signal,
we consider using it without changing its matrix structure.
Naturally, we retain the real and imaginary parts of R̂C to
form a M ×M × 2 real-valued matrix R̄C as the input of
ICRN and SNDN, whose first and second ”channels” are given
by R̄C :,:,1 = Re{R̂C} and R̄C :,:,2 = Im{R̂C}, respectively.

B. Design for SNDN

Obviously, it is crucial to obtain the number of sources
accurately before estimating DOA for most methods. Due
to this reason, we design SNDN to realize target number
detection. The SNDN receives R̄C as input, and its label is a
one-hot encoding of target number. Specifically, if the target
number of a sample is K, the corresponding label of SNDN is
the (K+1)th column of the M×M identity matrix. Of course,
the label design of SNDN includes the case of no signal, that
is, when the label is the first column of the identity matrix.

Fig. 2 shows the structure of SNDN, which contains a total
of 8 layers after the input. Easily, SNDN can be represented by
a non-linear mapping function FSNDN : RM×M×2 → RM .
In particular, we have

FSNDN (R̄C) = f8(f7(· · · f1(R̄C))) = û (4)

where {fi(·)}i=1,2,3,4 all represent the same structure: a 2D
convolutional layer followed by a batch normalization (BN)
layer and a rectified linear unit (ReLU) layer. For each 2D
convolutional layer, 128 filters of size 2×2 and the same
padding strategy are adopted to achieve multi-dimensional
feature acquisition while avoiding the loss of edge information.
Then, {fi(·)}i=5,6,7 respectively denote a dense layer with
512, 256 and 128 neurons. Based on the settings for SNDN
labels, we can treat source number detection as a multi-class
classification problem with the number of classes M . Corre-
spondingly, the last layer f8(·) is designed as a dense layer

1545



Fig. 2. The structures of SNDN and ICRN. Each 2D convolutional layer is
followed by the batch normalization and ReLU layers.

with M neurons followed by a softmax activation function.
The output û of SNDN is denoted as û = [û1, û2, · · · , ûM ]

T ,
where any element ûj represents the possibility of the target
quantity being j − 1.

The loss function of SNDN is the categorical cross entropy,
which is defined as follows

LSNDN (u, û) =
1

T

T∑
t=1

M∑
j=1

uj(t)log[ûj(t)] (5)

where T is the total number of samples, ûj(t) represents the
j-th element of SNDN prediction result for the t-th sample,
while the corresponding label is defined as uj(t).

C. Design for Database

In fact, training neural networks separately for different
numbers of sources is beneficial to improve the estimation
accuracy and enhance the generalization performance of the
algorithm [17]. Therefore, we build a database to store the
network parameters pre-trained by ICRN under different target
numbers, and more importantly, it also stores the mapping rela-
tionship between the number of sources and the corresponding
trained network parameters. Specifically, the prediction results
of the SDNN about the number of sources are input into the
database, which will directly determine the selection of ICRN
parameters in the database.

D. Design for ICRN

In order to achieve decoupling while denoising, we de-
sign the ICRN to learn the relevant information r̄ of the
ideal array covariance matrix from R̄C . The label r̄ of the
ICRN is represented as r̄ = [Re{r1},Re{r2}, · · · ,Re{rM},
Im{r1}, Im{r2}, · · · , Im{rM}]T , whose size is 2M×1, where
r = [r1, r2, · · · , rM ]

T is the first row of corresponding ideal
array covariance matrix R. For convenience, R is calculated
by the array manifold matrix A, that is, R = AAH . There-
fore, we can use a non-linear function GICRN : RM×M×2 →
R2M to generalize ICRN. Specifically, it is expressed by

GICRN (R̄C) = g8(g7(· · · g1(R̄C))) = r̂. (6)

As shown in Fig. 2, the architecture of ICRN is composed
of 8 layers, which is similar to that of SNDN. We can see
that the difference between ICRN and SNDN is the label and
their respective last layer. The last layer g8(·) for ICRN is a
dense layer with 2M neurons for regression task. Furthermore,

mean square error (MSE) is used as the loss function of ICRN,
which is given by

LICRN (r̄, r̂) =
1

T

T∑
t=1

[r̄(t)− r̂(t)]
2 (7)

where r̄(t) and r̂(t) represent the label and actual output of
the ICRN for the t-th sample, respectively. T is still the total
sample size.

IV. NUMERICAL SIMULATIONS

A. Simulation Settings

Theoretically, for different environment and array configu-
ration, DOA estimation can be easily achieved by fine-tuning
the relevant parameters in our network and then updating the
database after pre-training. For simplicity, the proposed archi-
tecture is evaluated on a ULA of M = 7 elements in Gaussian
white noise, and the number of mutual coupling coefficients is
P = 2 with c1 = 0.5663+0.4114i and c2 = 0.2898−0.0776i.
The datasets of SNDN is set as follows: The number of
snapshots N is fixed at 200, the number of sources K is
first randomly generated 0.1 million times over [0,M − 1],
then the DOA of each source is randomly generated between
[−60◦, 60◦]. For every time implementation, we generate 10
samples with the SNR randomly distributed in [−10 dB,15
dB]. Therefore, there are a total of 1 million samples in the
datasets of SNDN, of which the training data and validation
data account for 80% and 20% respectively.

In order to obtain the ICRN parameters for locating dif-
ferent source numbers, we set up datasets for the M − 1
situations where the number of sources exists, respectively.
For the k-th situation, we assume that there are k sources
randomly distributed in the spatial scope of [−60◦, 60◦], where
1 ≤ k ≤ M − 1. For each situation, we perform 60000
times random distributions of DOA. Then, 30 samples are
generated for each time execution, where the SNR of samples
is randomly distributed from −10 dB to 15 dB, and the
snapshot N is 200. Thus, we generate 1.8 million samples
for the datasets of ICRN in each situation.1 Furthermore, 80%
and 20% of the datasets are chosen for training and validation
data, respectively. It should be noted that for each situation, we
train ICRN separately and store its corresponding parameters
in the database.

After generating the datasets, considering the tradeoff be-
tween the expression ability and generalization performance
of the network, we set the training parameters for SNDN and
ICRN: The adaptive moment estimation (ADAM) optimizer is
employed to determine the optimal parameters with an initial
learning rate of 0.001 [18], and the learning rate will be
halved after every 10 epochs. The maximum number of epoch
for training is fixed at 30, and the order of the samples is
shuffled during every epoch. In addition, a mini-batch size of
64 samples is used for network training. In the following, we
will present several simulations to verify the effectiveness of

1Due to space constraints, the impact of datasets size on the algorithm is
not discussed in this paper, and we will investigate it in our future work.
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Fig. 3. (a) Convolutional layers’ impact on DOA estimation, where K = 4.
(b) The accuracy of source number detection versus the SNR.

our proposed architecture, and the simulations experimental
results are all based on 1000 independent random trials.
Furthermore, all test data are excluded from the proposed
algorithm’s training and validation datasets.

B. Impact of Convolutional Layers

Before evaluating the parameters of interest, we study the
impacts of convolutional layers on the ICRN network per-
formance. For comparison, we train different ICRN networks
with 1 to 5 convolutional layers. Fig. 3(a) shows the root mean
square errors (RMSEs) of the estimated DOAs achieved by
different ICRN networks in terms of the SNR. We can see
that at small SNRs, as the number of convolutional layers
increases from 1 to 5, the estimation performance improves
due to the enhanced expression power of the networks [19].
However, when the SNR is greater than 5 dB, it is worth
noting that the ICRN network consisting of four convolutional
layers outperform those of five layers. The reason may be
that too many network parameters lead to the phenomenon
of overfitting [20]. Therefore, the proposed ICRN with four
convolutional layers is based on a comprehensive trade-off
between the network of expressive ability and overfitting risk.

C. Source Number Detection

For the source number detection problem, we adopt the
LogECNet [21], the RMT-AIC [22], the MDL and the AIC
estimators [23] as benchmarks. Fig. 3(b) depicts the accuracy
performance of all estimators versus the SNR, where the
number of sources in the test datasets is distributed in [1, 4].
It can be seen from the figure that the proposed SNDN
significantly outperforms all other estimators, especially in the
low SNR region. Besides, even when the SNR reaches 15 dB,
the accuracy of the LogECNet and classical estimators can
only reach 0.95. The reason may be that these estimators are
all based on the eigenvalues of the covariance matrix with
mutual coupling effects, which do not eliminate the influence
of mutual coupling effects on the estimators.

D. DOA Estimation

In order to verify the superiority of the proposed ICRN algo-
rithm, the performance of the proposed method is compared
with the R-RARE method in [9], the RARE method in [8],
the MID-ARRAY method in [5], the MUSIC method in [2]
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Fig. 4. Performance of DOA estimation with different source numbers

and the CRB in [4]. For the sake of fairness, it is assumed
that the number of sources is accurately known in advance,
and all algorithms are based on the MUSIC method for DOA
estimation, where the grid spacing of spectral peak search is
fixed at ∆θ = 0.1◦. In addition, it should be mentioned that
for the R-RARE and RARE algorithms, they can only be used
to estimate DOAs when KRARE ≤M −P − 1 [9], while for
the MID-ARRAY method, the DOAs can only be estimated
when KMID ≤M − 2P − 1 [5].

The performance of estimated DOA in terms of SNR
for different number of sources is shown in Fig. 4. Un-
der the experimental conditions designed in this paper, the
maximum number of sources that can be estimated by the
R-RARE/RARE and MID-ARRAY algorithms is 4 and 2,
respectively. Therefore, we do not show the performance of
the MID-ARRAY algorithm in Fig. 4(c) and (d). We can
see that compared to other classical algorithms, our proposed
ICRN algorithm performs best in the DOAs estimation with
different source numbers involved in Fig. 4. It is worth noting
that in Fig. 4(a) and (b), the ICRN even beats the CRB
when the SNR is small. The possible reason for this is
that the CRB represents the best accuracy of the unbiased
estimator, while the ICRN is a biased estimator, which is not
constrained by the Cramér-Rao Lower Bound. Furthermore,
we can also observe that in Fig. 4(c) and (d), as the number
of sources increases, the performance of ICRN compared to
CRB gradually deteriorates. One possible reason is that the
accuracy of ICRN as a biased estimator is limited by the size
of the training dataset [15]. Combining the results of previous
simulation, it can be known easily that the proposed ICRN
algorithm has effectively solved the problem of array aperture
reduction when some existing algorithms reduce or eliminate
the mutual coupling effect.

Fig. 5(a) displays the RMSEs of the estimated DOAs with
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Fig. 5. RMSEs of the estimated DOAs versus (a) the number of snapshots
and (b) the angular separation, where K = 2.

respect to the number of snapshots. It should be noted that
the simulation conditions in Fig. 5(a) are: the SNR of the test
sample is fixed at 10 dB, and there are two signal sources.
In this figure, both the ICRN and the ICRN (SNRG) are
implemented according to the structure of Fig. 2, the only
difference is their training data. In particular, the ICRN is
trained under the dataset as described in section IV-A with
a fixed snapshots N of 200 and randomly generated SNR. In
contrast, the SNR of the training dataset for the ICRN (SNRG)
is fixed at 10 dB, and its snapshot numbers are randomly
generated (SNRG) within [10, 1000], and other simulation
settings are consistent with those of the ICRN. We can find that
even if the ICRN is not trained for different snapshot numbers,
it still has the competitive performance compared with other
model-based algorithms. This shows that the ICRN has good
generalization performance under different snapshot number
scenarios. Of course, it is natural that the ICRN (SNRG)
trained with different number of snapshots performs better than
the ICRN.

Finally, we explore the effect of the angular separation
on the DOA estimation performance in Fig. 5(b), where the
SNR is fixed at 10dB, and the number of snapshots is set at
200. In this experiment, two sources located in −20.65◦ and
−20.65◦+∆θ are considered, where ∆θ is varied from 2◦ to
22◦ with ∆θ = 2◦. We can see from the figure that no matter
the angular separation is large or small, the DOA estimation
accuracy of our proposed ICRN algorithm is always higher
than other algorithms. In addition, it is worth noting that the
proposed ICRN method is more advantageous over some small
angular intervals such as 4◦ to 6◦.

V. CONCLUSION

In this paper, a deep learning based framework is proposed
to estimate DOA with unknown mutual coupling, which
mainly consists of the SNDN network responsible for source
number detection and the ICRN network responsible for ideal
covariance matrix recovery. The proposed SNDN can achieve
end-to-end output by learning the source number information
in the real sample covariance matrix. The proposed ICRN
network is designed based on the Toeplitz matrix structure,
and its parameters are loaded from a database containing
network weight parameters pre-trained for different source
numbers. Numerical results show that, compared with classical

algorithms, the proposed approach can significantly improve
the accuracy of both source number detection and DOA
estimation.
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