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Abstract—We consider a mixed analog-to-digital converter
(ADC) based architecture for the direction of arrival (DOA)
estimation under sparse linear arrays (SLAs) with arbitrary
structure. Given the fixed number of ADCs, the arrangement
of high-precision and one-bit ADCs in SLA is analyzed us-
ing Cramér-Rao bound (CRB). To obtain the optimal mixed-
precision arrangement, we simplify the problem into a 0-1 integer
quadratic programming and efficiently solve it by using the
alternating direction method of multipliers (ADMM) algorithm.
Simulation results validate the effectiveness of our approach.
Furthermore, SLAs, such as the nested and co-prime array,
can achieve a lower CRB with the optimal mixed-precision
arrangement.

Index Terms—Cramér-Rao bound (CRB), direction of arrival
(DOA), mixed-ADC based architecture, mixed-precision arrange-
ment, sparse linear array (SLA).

I. INTRODUCTION

The estimation of direction of arrival (DOA) is a crucial
problem in the field of array signal processing, with numerous
applications in automotive radar, sonar, and unmanned aerial
vehicles [1–3]. DOA estimation using uniform linear arrays
(ULAs) has received considerable attention in recent decades.
However, the number of identifiable sources is limit by the
number of sensors [4, 5]. Due to specific geometries, sparse
linear array (SLA), such as minimum redundancy arrays [6],
co-prime arrays [7] and nested arrays [8], can identify more
sources and achieve higher angular resolution than the ULA.
With SLAs, numerous algorithms based on data, sampled by
high-precision analog-to-digital converters (ADCs), have been
proposed to address the problem of DOA estimation. However,
as the quantization bit and sampling rate increase, the power
consumption and hardware cost of ADC increase exponentially
[9], making it impractical to use large scale high-precision
ADC systems, e.g., receive antennas in high-level autonomous
driving.

One-bit ADC has recently emerged as a promising tech-
nique [10–13] for mitigating the aforementioned ADC prob-
lems. However, using a pure one-bit ADC system can lead
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to some problems such as a large rate loss in high signal-
to-noise ratio (SNR) regime [14] and dynamic range prob-
lem (i.e., a strong target can mask a weak target [9]). To
address these issues, a mixed-ADC based architecture has
been proposed in [15], where most receive antenna outputs
are sampled by one-bit ADCs and a few by high-resolution
ADCs. Previous studies have investigated the approximate
DOA performance loss [16] and Cramér-Rao bound (CRB)
in phase-modulated continuous-wave multiple-input multiple-
output radar [17] with a mixed-ADC architecture. However,
they did not exploit the full potential of the mixed-ADC
architecture, as they used high-precision ADCs on one side
and one-bit ADCs on the other side. Although the arrangement
of high-precision and one-bit ADCs in ULA has been analyzed
in [18] based on the property of symmetry, it still remains a
problem for SLAs with arbitrary structures.

Using CRB, this work investigates the mixed-precision
arrangement problem in SLAs with arbitrary structure under
a mixed-ADC based architecture. We first derive the asymp-
totic CRB of the DOA in SLAs, and convert the problem
into a simplified 0-1 integer quadratic programming problem.
We employ the alternating direction method of multipliers
(ADMM) algorithm to efficiently solve it. Numerical results
demonstrate that the optimal mixed-precision arrangement can
achieve better performance.

Notation: We denote vectors and matrices by bold lowercase
and uppercase letters, respectively. (·)T and (·)H represent the
transpose and the conjugate transpose, respectively. IN denotes
an N ×N identity matrix and 1N = [1, . . . , 1]T ∈ RN×1. ⊗,
⊙ and ◦ denote the Kronecker, Khatri–Rao and Hadamard
matrix products, respectively. ∥ · ∥ denotes the ℓ2 norm. vec(·)
refers to the column-wise vectorization operation and diag(d)
denotes a diagonal matrix with diagonal entries formed from
d. AR ≜ ℜ{A} and AI ≜ ℑ{A}, where ℜ{·} and ℑ{·}
denote the real and imaginary parts, respectively. sign(·) is
the sign function applied element-wise to vector or matrix.
Finally, j ≜

√
−1.

II. SIGNAL MODEL

We consider a SLA with M elements located at position
{d1 λ

2 , d1
λ
2 , . . . , dM

λ
2 } with di ∈ D, where D is a set of

integers with cardinality |D| = M and λ is the wavelength of
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the signal. It is assumed that K narrowband far-field signals
impinge on the array from different directions {θ1, . . . , θK}.
After sampling and quantization, the array output can be
stacked over the whole N snapshots as

X = AS+E, (1)

where X = [x(1),x(2), . . . ,x(N)] ∈ CM×N is the
received signal matrix, A = [a (θ1) , · · · ,a (θK)] ∈ CM×K

represents the array steering matrix with

a(θk) =
[
ejπd1 sin θk , ejπd2 sin θk , . . . , ejπdM sin θk

]T
, (2)

denoting the steering vector of the the kth source, S =
[s(1), s(2), . . . , s(N)] ∈ CK×N denotes the source signal
matrix, and E = [e(1), e(2), . . . , e(N)] ∈ CM×N is the noise
sequence. The noise has the zero-mean circularly symmetric
complex-valued white Gaussian distribution with independent
and identically distributed (i.i.d.) known variance σ2. The
source signal matrix S is assumed to be deterministic but un-
known, which is referred to as the conditional or deterministic
model [5].

When one-bit ADC is employed with time-varying threshold
for quantization, the array output is modified as

Z = Q(X−H), (3)

where H ∈ CM×N represents the known threshold and
Q(·) = sign(ℜ{·})+jsign(ℑ{·}) denotes the complex one-bit
quantization operator.

We consider a mixed-ADC based architecture equipped with
M0 high-resolution ADCs and M1 one-bit ADCs, where M0+
M1 = M . More generally, we define a high-precision ADC
indicator vector δ = [δ1, . . . , δM ]T with δi ∈ {0, 1}, which
means that the ith antenna is equipped with high-precision
ADC when δi = 1 or one-bit ADC when δi = 0. So the
mixed output can be represented as

Y = Z ◦ (δ̄ ⊗ 1T
N ) +X ◦ (δ ⊗ 1T

N ), (4)

where δ̄ = 1M − δ is the indicator for one-bit ADC.

Nest array and co-prime array are two popular sparse arrays.
The nested array is composed of two ULAs which have
different inter-element spacings. Specifically, a nested array
with N1 +N2 sensors has the following sensor locations:

Dnested = {1, . . . , N1, (N1 + 1) , . . . N2 (N1 + 1)} , (5)

and the sensor locations for co-prime with N1 + 2N2 − 1 are
given by

Dco-prime = {0, N2, . . . , (N1 − 1)N2, N1, . . . , (2N2 − 1)N1}. (6)

III. CRB OF THE DOA FOR MIXED DATA

Let φ collect all the real-valued unknown signal parameters,
i.e., φ =

[
θT , sTR, sTI

]T ∈ R(K+2KN)×1, where s = vec(S).

In [18], the Fisher information matrix (FIM) for mixed data

is given by

Fm(φ) =
2

σ2
ℜ
{
U0U

H
0

}
+

1

πσ2

(
U1,RΛRU

T
1,R +U1,IΛIU

T
1,I

)
. (7)

Here, U0 = Udiag (1N ⊗ δ) and U1 = Udiag
(
1N ⊗ δ

)
denote the derivatives of the high-precision and one-bit data
with respect to φ respectively, where

U = [∆, G, jG]
H
, (8)

∆ = ST ⊙ Ȧ, G = IN ⊗A, (9)

Ȧ =

[
∂a (θ1)

∂θ1
, . . . ,

∂a (θK)

∂θK

]
. (10)

Additionally, Λ = diag([λ1, . . . , λMN ]) where the diagonal
element λk is given by

λk = B

(
ℜ (ζk)

σ/
√
2

)
+ jB

(
ℑ (ζk)

σ/
√
2

)
, (11)

in which ζk is the kth element in ζ = vec(AS−H) ∈ CMN×1

and the function B(·) is defined by

B(x) =

[
1

Φ(x)
+

1

Φ(−x)

]
e−x2

(12)

with Φ(x) =
∫ x

−∞
1√
2π

e−
t2

2 dt being the cumulative distribu-
tion function of the normal standard distribution.

Since the FIM of mixed data reaches its upper bound when
H = AS [19], we consider the simplified CRB that can be
approximately achieved in a low SNR scene. So the asymptotic
CRB of the DOA [18] can be given as

CRB(θ) =
σ2

2N
ℜ
{(

ȦHΩȦ
)
◦ P̂T

}−1

, (13)

where

P̂ =
1

N

N∑
t=1

s(t)sH(t), (14)

Ω = Σ0 −Σ0A(AHΣ0A)−1AHΣ0, (15)

Σ0 =

(
1− 2

π

)
diag(δ) +

2

π
IM . (16)

Considering that the estimated power P̂ can be replaced by
the true power P for sufficiently large N , the asymptotic CRB
of the DOA is given by

CRB(θ) =
σ2

2N
ℜ
{(

ȦHΩȦ
)
◦PT

}−1

. (17)

A. CRB for K = 1

When a single target is considered, the asymptotic CRB of
the DOA can be expressed as

CRB(θ) =
M0 +

2
πM1

2π2S

1

SNR cos2 θ
, (18)
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where SNR = p/σ2 and

S =

M∑
i=1

gid
2
i

M∑
i=1

gi −

(
M∑
i=1

gidi

)2

, (19)

in which gi ∈ {1, 2
π} and

∑M
i=1 gi = M0 +

2
πM1.

B. Mixed-precision arrangement problem in SLA

It is found that the asymptotic CRB of the DOA is related
to the arrangement of one-bit and high-precision ADCs. How-
ever, identifying the optimal mixed-precision arrangement is
a combinatorial optimization problem which is recognized to
be NP-hard.

Since the parameters of target and array are fixed, the
asymptotic CRB is only concerned with S. By using La-
grange’s identity, we can formulate the problem as

max
{gi}i=1,2··· ,M

S =

M∑
i=1

∑
j>i

gigj(dj − di)
2

s.t. gi ∈ {1, 2
π
}, i = 1, 2, . . . ,M,

M∑
i=1

gi = M0 +
2

π
M1. (20)

By vectorizing the parameters and introducing a new vari-
able zi ∈ {0, 1} such that gi = (1− 2

π )zi+
2
π , the optimization

objective can be rewritten as

S =
1

2

((
1− 2

π

)
z+

2

π
1M

)T

D

((
1− 2

π

)
z+

2

π
1M

)
=

1

2

(
1− 2

π

)2

(zTDz+ bT z) +
4

π2
1T
MD1M (21)

where z = [z1, z2, . . . , zM ]T , D is a matrix with Dij =
(di − dj)

2 and b = 4
π−2D1M . Thus, the mixed-precision

arrangement problem can be reformulated as

min
z

−zTDz− bT z

s.t. z ∈ {0, 1}M ,

1T
Mz = M0. (22)

IV. OPTIMIZATION

The optimization problem (22) is a challenging 0-1 integer
programming problem. Note that the binary constraint can be
transformed to continuous constraint as follows [20]:

z ∈ {0, 1}M ⇔ z ∈ Sb ∩ z ∈ Sp (23)

where Sb = [0, 1]M denotes a box constraint, and Sp ={
z :
∥∥z− 1

21M

∥∥2
2
= M

4

}
indicates a ℓ2-sphere constraint.

With these constraints, we reformulated the problem (22) as

min
z

−zTDz− bT z

s.t. 1T
Mz = M0, z = z1, z = z2,

z1 ∈ Sb, z2 ∈ Sp, (24)

where z1 and z2 are two additional variables to decompose
the box and the ℓ2-sphere constraints on z. Since the problem
is non-convex, we use the ADMM to solve it.

Specifically, the augmented Lagrangian function of (24) is
given by

L(z, z1, z2,η1,η2, η3) = −zTDz− bT z+ h1(z1) + h2(z2)

+ ηT
1 (z− z1) + ηT

2 (z− z2) + η3(1
T
Mz−M0)

+
ρ1
2
∥z− z1∥22 +

ρ2
2
∥z− z2∥22 +

ρ3
2
∥1T

Mz−M0∥22, (25)

where η1 ∈ RM , η2 ∈ RM , η3 ∈ R are dual variables
and (ρ1, ρ2, ρ3) are positive penalty parameters. The function
h1(z1) = I{z1∈Sb} and h2(z2) = I{z2∈Sp} are indicator
function for sets Sb and Sp respectively, where

Ia =

{
0 when a is true
+∞ when a is false

(26)

Following the conventional ADMM, we update the primal
and dual variables iteratively. Given the parameter estimates
at iteration t, we obtain the updates as described below.

A. Update zt+1

When the other variables are fixed, the Lagrangian function
with respect to z is convex. By setting the gradient to zero,
zt+1 can be obtained directly as the solution to the following
positive-definite linear system:

(−2D+ (ρ1 + ρ2)I+ ρ31M1T
M )zt+1 =

ρ1z
t
1 + ρ2z

t
2 +M0ρ31M + b− ηt

1 − ηt
2 − ηt31M , (27)

Remark 1. It is worth noting that, for z ∈ {0, 1}M , we
have zT z = 1T

Mz. Furthermore, since −zTDz = zT (αI −
D)z− α1T

Mz for any α, we can assume that −D is positive
semi-definite. Thus, (27) can be efficiently solved by using the
preconditioned conjugate gradient method.

B. Update (zt+1
1 , zt+1

2 )

The vectors z1 and z2 are updated via the following
optimization problems:

z1 = argmin
z1

h1(z1) +
ρ1
2

∥z− z1∥22 + ηT
1 (z− z1), (28)

z2 = argmin
z2

h2(z2) +
ρ2
2

∥z− z2∥22 + ηT
2 (z− z2). (29)

The solutions can be obtained by projecting the vector z onto
the box constraint Sb and ℓ2-sphere constraint Sp, respectively,
which gives that

zt+1
1 = PSb

(
zt+1 +

1

ρ1
ηt
1

)
, (30)

zt+1
2 = PSp

(
zt+1 +

1

ρ2
ηt
2

)
, (31)

where PSb
(x) = min(1M ,max(0M ,x)) and PSp(x) =

√
M
2

x− 1
21M

∥x− 1
21M∥ + 1

21M with x ∈ RM .
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C. Update (ηt+1
1 ,ηt+1

2 , ηt+1
3 )

The dual variables are updated by the conventional gradient
ascent method as

ηt+1
1 = ηt

1 + ρ1(z
t+1 − zt+1

1 ), (32)

ηt+1
2 = ηt

2 + ρ1(z
t+1 − zt+1

2 ), (33)

ηt+1
3 = ηt3 + ρ3(1

T
Mz−M0). (34)

Although the problem in (24) is non-convex, ADMM
can still provide a guarantee of convergence to a
Karush–Kuhn–Tucker point [20] by updating the above pa-
rameters.

V. SIMULATION AND DISCUSSION

In this section, we present numerical examples to demon-
strate the effectiveness of the optimal mixed-precision arrange-
ment. We consider three array structures, i.e., ULA, nested
array and co-prime array, assuming the total antenna element
M = 30 and the number of high-precision ADCs M0 = 8. We
consider four situations for the mixed-ADC based architecture:

1) {δi = 1}8i=1 and {δi = 0}30i=9;
2) {δi = 0}22i=1 and {δi = 1}30i=23;
3) {δi = 0}10i=1, {δi = 1}18i=11 and {δi = 0}30i=19;
4) The optimal mixed-precision arrangement computed by

the ADMM.
It is assumed that three independent targets locate at {θ1 =

10◦, θ2 = 15◦, θ3 = 30◦}. All sources have an equal power,
and the SNR is defined as SNR = p/σ2. For the one-bit
ADC system and mixed-ADC based architecture, the time-
vary threshold has the real and imaginary parts selected ran-
domly and equally likely from a predefined eight-element set
{−hmax,−hmax +∆, . . . , hmax −∆, hmax} with hmax =

√
pout

and ∆ = hmax
7 , where

√
pout is the average received signal

power at the I/Q channels. In our simulation, we set the initial
solution z0 = 1M , ρ1 = ρ2 = ρ3 = 1.6, and the matrix D is
normalized.

In Fig. 1, the iterative procedure of the ADMM using ULA
is illustrated. After only 10 iteration, the initialized value
approaches an almost binary state, on which the CRB is close
to the global maximum. And the result is consistent with [18],
that the high-precision ADCs are placed evenly around the
edge of the ULA as expected.

Fig. 2 and Fig. 3 plot the CRBs versus SNR for θ1 (degress)
on different mixed-ADC architecture using nested array and
co-prime array, respectively, where situations 1, 2, 3 and
4 are denoted as “Mixed-ADC1”, “Mixed-ADC2”, “Mixed-
ADC3” and “Mixed-ADC4”, respectively. The optimal mixed-
precision arrangement is distinct for arrays with different
structure, with the exception that high-precision ADCs are
arranged at the edge of the array, which can be explained by
the fact that the optimal mixed-precision arrangement has the
largest antenna spacing for high-precision ADCs. Compared
with the pure one-bit system, mixed-ADC architecture can
significantly improve the performance. As SNR increases,
the performance gap between the optimal mixed-precision
arrangement and others widens. Notably, the CRB of DOA
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(a) objective value versus iteration

(b) solution changes versus iteration

Fig. 1. The optimization procedure of ADMM using ULA.
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Fig. 2. CRB versus SNR on different mixed-ADC architecture using nested
array with N1 = N2 = 15. The optimal mixed-precision arrangement is
obtained as {δi = 1}2i=1, {δi = 0}25i=4 and {δi = 1}30i=25.
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Fig. 3. CRB versus SNR on different mixed-ADC architecture using co-prime
array with N1 = 11, N2 = 10. The optimal mixed-precision arrangement is
obtained as {δi = 1}3i=1, {δi = 0}25i=4 and {δi = 1}30i=26.

on the optimal mixed-precision arrangement is almost 10 dB
lower than others when SNR = 20 dB. Therefore, a random
mixed-precision arrangement is inappropriate as it could result
in significant performance losses.

VI. CONCLUSION

In this work, we explore the arrangement of one-bit and
high-precision ADCs in SLAs with arbitrary structure under
a mixed-ADC based architecture. We analyze the CRB on
different mixed-precision arrangement when the fixed number
of ADCs is given. We simplified the problem into a 0-1
integer quadratic programming and solve it efficiently using
the ADMM algorithm to obtain the optimal mixed-precision
arrangement. Numerical examples show that SLAs, such as
nested array and co-prime array, can achieve a lower CRB
by using optimal mixed-precision arrangement, especially in
a large SNR scene.
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